1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright (c) 2017, Joyent, Inc. All rights reserved.
31 */
32
33 /*
34 * To understand how the apix module interacts with the interrupt subsystem read
35 * the theory statement in uts/i86pc/os/intr.c.
36 */
37
38 /*
39 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42 * PSMI 1.5 extensions are supported in Solaris Nevada.
43 * PSMI 1.6 extensions are supported in Solaris Nevada.
44 * PSMI 1.7 extensions are supported in Solaris Nevada.
45 */
46 #define PSMI_1_7
47
48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/pit.h>
57 #include <sys/ddi.h>
58 #include <sys/sunddi.h>
59 #include <sys/ddi_impldefs.h>
60 #include <sys/pci.h>
61 #include <sys/promif.h>
62 #include <sys/x86_archext.h>
63 #include <sys/cpc_impl.h>
64 #include <sys/uadmin.h>
65 #include <sys/panic.h>
66 #include <sys/debug.h>
67 #include <sys/archsystm.h>
68 #include <sys/trap.h>
69 #include <sys/machsystm.h>
70 #include <sys/sysmacros.h>
71 #include <sys/cpuvar.h>
72 #include <sys/rm_platter.h>
73 #include <sys/privregs.h>
74 #include <sys/note.h>
75 #include <sys/pci_intr_lib.h>
76 #include <sys/spl.h>
77 #include <sys/clock.h>
78 #include <sys/cyclic.h>
79 #include <sys/dditypes.h>
80 #include <sys/sunddi.h>
81 #include <sys/x_call.h>
82 #include <sys/reboot.h>
83 #include <sys/mach_intr.h>
84 #include <sys/apix.h>
85 #include <sys/apix_irm_impl.h>
86
87 static int apix_probe();
88 static void apix_init();
89 static void apix_picinit(void);
90 static int apix_intr_enter(int, int *);
91 static void apix_intr_exit(int, int);
92 static void apix_setspl(int);
93 static int apix_disable_intr(processorid_t);
94 static void apix_enable_intr(processorid_t);
95 static int apix_get_clkvect(int);
96 static int apix_get_ipivect(int, int);
97 static void apix_post_cyclic_setup(void *);
98 static int apix_post_cpu_start();
99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
100 psm_intr_op_t, int *);
101
102 /*
103 * Helper functions for apix_intr_ops()
104 */
105 static void apix_redistribute_compute(void);
106 static int apix_get_pending(apix_vector_t *);
107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t);
108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *);
109 static char *apix_get_apic_type(void);
110 static int apix_intx_get_pending(int);
111 static void apix_intx_set_mask(int irqno);
112 static void apix_intx_clear_mask(int irqno);
113 static int apix_intx_get_shared(int irqno);
114 static void apix_intx_set_shared(int irqno, int delta);
115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int,
116 struct intrspec *);
117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *);
118
119 extern int apic_clkinit(int);
120
121 /* IRM initialization for APIX PSM module */
122 extern void apix_irm_init(void);
123
124 extern int irm_enable;
125
126 /*
127 * Local static data
128 */
129 static struct psm_ops apix_ops = {
130 apix_probe,
131
132 apix_init,
133 apix_picinit,
134 apix_intr_enter,
135 apix_intr_exit,
136 apix_setspl,
137 apix_addspl,
138 apix_delspl,
139 apix_disable_intr,
140 apix_enable_intr,
141 NULL, /* psm_softlvl_to_irq */
142 NULL, /* psm_set_softintr */
143
144 apic_set_idlecpu,
145 apic_unset_idlecpu,
146
147 apic_clkinit,
148 apix_get_clkvect,
149 NULL, /* psm_hrtimeinit */
150 apic_gethrtime,
151
152 apic_get_next_processorid,
153 apic_cpu_start,
154 apix_post_cpu_start,
155 apic_shutdown,
156 apix_get_ipivect,
157 apic_send_ipi,
158
159 NULL, /* psm_translate_irq */
160 NULL, /* psm_notify_error */
161 NULL, /* psm_notify_func */
162 apic_timer_reprogram,
163 apic_timer_enable,
164 apic_timer_disable,
165 apix_post_cyclic_setup,
166 apic_preshutdown,
167 apix_intr_ops, /* Advanced DDI Interrupt framework */
168 apic_state, /* save, restore apic state for S3 */
169 apic_cpu_ops, /* CPU control interface. */
170 };
171
172 struct psm_ops *psmops = &apix_ops;
173
174 static struct psm_info apix_psm_info = {
175 PSM_INFO_VER01_7, /* version */
176 PSM_OWN_EXCLUSIVE, /* ownership */
177 &apix_ops, /* operation */
178 APIX_NAME, /* machine name */
179 "apix MPv1.4 compatible",
180 };
181
182 static void *apix_hdlp;
183
184 static int apix_is_enabled = 0;
185
186 /*
187 * Flag to indicate if APIX is to be enabled only for platforms
188 * with specific hw feature(s).
189 */
190 int apix_hw_chk_enable = 1;
191
192 /*
193 * Hw features that are checked for enabling APIX support.
194 */
195 #define APIX_SUPPORT_X2APIC 0x00000001
196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC;
197
198 /*
199 * apix_lock is used for cpu selection and vector re-binding
200 */
201 lock_t apix_lock;
202 apix_impl_t *apixs[NCPU];
203 /*
204 * Mapping between device interrupt and the allocated vector. Indexed
205 * by major number.
206 */
207 apix_dev_vector_t **apix_dev_vector;
208 /*
209 * Mapping between device major number and cpu id. It gets used
210 * when interrupt binding policy round robin with affinity is
211 * applied. With that policy, devices with the same major number
212 * will be bound to the same CPU.
213 */
214 processorid_t *apix_major_to_cpu; /* major to cpu mapping */
215 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */
216
217 int apix_nipis = 16; /* Maximum number of IPIs */
218 /*
219 * Maximum number of vectors in a CPU that can be used for interrupt
220 * allocation (including IPIs and the reserved vectors).
221 */
222 int apix_cpu_nvectors = APIX_NVECTOR;
223
224 /* gcpu.h */
225
226 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);
227 extern void apic_change_eoi();
228
229 /*
230 * This is the loadable module wrapper
231 */
232
233 int
234 _init(void)
235 {
236 if (apic_coarse_hrtime)
237 apix_ops.psm_gethrtime = &apic_gettime;
238 return (psm_mod_init(&apix_hdlp, &apix_psm_info));
239 }
240
241 int
242 _fini(void)
243 {
244 return (psm_mod_fini(&apix_hdlp, &apix_psm_info));
245 }
246
247 int
248 _info(struct modinfo *modinfop)
249 {
250 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop));
251 }
252
253 static int
254 apix_probe()
255 {
256 int rval;
257
258 if (apix_enable == 0)
259 return (PSM_FAILURE);
260
261 /*
262 * FIXME Temporarily disable apix module on Xen HVM platform due to
263 * known hang during boot (see #3605).
264 *
265 * Please remove when/if the issue is resolved.
266 */
267 if (get_hwenv() == HW_XEN_HVM)
268 return (PSM_FAILURE);
269
270 /* check for hw features if specified */
271 if (apix_hw_chk_enable) {
272 /* check if x2APIC mode is supported */
273 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) ==
274 APIX_SUPPORT_X2APIC) {
275 if (apic_local_mode() == LOCAL_X2APIC) {
276 /* x2APIC mode activated by BIOS, switch ops */
277 apic_mode = LOCAL_X2APIC;
278 apic_change_ops();
279 } else if (!apic_detect_x2apic()) {
280 /* x2APIC mode is not supported in the hw */
281 apix_enable = 0;
282 }
283 }
284 if (apix_enable == 0)
285 return (PSM_FAILURE);
286 }
287
288 rval = apic_probe_common(apix_psm_info.p_mach_idstring);
289 if (rval == PSM_SUCCESS)
290 apix_is_enabled = 1;
291 else
292 apix_is_enabled = 0;
293 return (rval);
294 }
295
296 /*
297 * Initialize the data structures needed by pcplusmpx module.
298 * Specifically, the data structures used by addspl() and delspl()
299 * routines.
300 */
301 static void
302 apix_softinit()
303 {
304 int i, *iptr;
305 apix_impl_t *hdlp;
306 int nproc;
307
308 nproc = max(apic_nproc, apic_max_nproc);
309
310 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP);
311 for (i = 0; i < nproc; i++) {
312 apixs[i] = &hdlp[i];
313 apixs[i]->x_cpuid = i;
314 LOCK_INIT_CLEAR(&apixs[i]->x_lock);
315 }
316
317 /* cpu 0 is always up (for now) */
318 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
319
320 iptr = (int *)&apic_irq_table[0];
321 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
322 apic_level_intr[i] = 0;
323 *iptr++ = NULL;
324 }
325 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
326
327 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt,
328 KM_SLEEP);
329
330 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
331 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt,
332 KM_SLEEP);
333 for (i = 0; i < devcnt; i++)
334 apix_major_to_cpu[i] = IRQ_UNINIT;
335 }
336
337 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL);
338 }
339
340 static int
341 apix_get_pending_spl(void)
342 {
343 int cpuid = CPU->cpu_id;
344
345 return (bsrw_insn(apixs[cpuid]->x_intr_pending));
346 }
347
348 static uintptr_t
349 apix_get_intr_handler(int cpu, short vec)
350 {
351 apix_vector_t *apix_vector;
352
353 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR);
354 if (cpu >= apic_nproc)
355 return (NULL);
356
357 apix_vector = apixs[cpu]->x_vectbl[vec];
358
359 return ((uintptr_t)(apix_vector->v_autovect));
360 }
361
362 static void
363 apix_init()
364 {
365 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *);
366
367 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n"));
368
369 do_interrupt_common = apix_do_interrupt;
370 addintr = apix_add_avintr;
371 remintr = apix_rem_avintr;
372 get_pending_spl = apix_get_pending_spl;
373 get_intr_handler = apix_get_intr_handler;
374 psm_get_localapicid = apic_get_localapicid;
375 psm_get_ioapicid = apic_get_ioapicid;
376
377 apix_softinit();
378
379 #if !defined(__amd64)
380 if (cpuid_have_cr8access(CPU))
381 apic_have_32bit_cr8 = 1;
382 #endif
383
384 /*
385 * Initialize IRM pool parameters
386 */
387 if (irm_enable) {
388 int i;
389 int lowest_irq;
390 int highest_irq;
391
392 /* number of CPUs present */
393 apix_irminfo.apix_ncpus = apic_nproc;
394 /* total number of entries in all of the IOAPICs present */
395 lowest_irq = apic_io_vectbase[0];
396 highest_irq = apic_io_vectend[0];
397 for (i = 1; i < apic_io_max; i++) {
398 if (apic_io_vectbase[i] < lowest_irq)
399 lowest_irq = apic_io_vectbase[i];
400 if (apic_io_vectend[i] > highest_irq)
401 highest_irq = apic_io_vectend[i];
402 }
403 apix_irminfo.apix_ioapic_max_vectors =
404 highest_irq - lowest_irq + 1;
405 /*
406 * Number of available per-CPU vectors excluding
407 * reserved vectors for Dtrace, int80, system-call,
408 * fast-trap, etc.
409 */
410 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR -
411 APIX_SW_RESERVED_VECTORS;
412
413 /* Number of vectors (pre) allocated (SCI and HPET) */
414 apix_irminfo.apix_vectors_allocated = 0;
415 if (apic_hpet_vect != -1)
416 apix_irminfo.apix_vectors_allocated++;
417 if (apic_sci_vect != -1)
418 apix_irminfo.apix_vectors_allocated++;
419 }
420 }
421
422 static void
423 apix_init_intr()
424 {
425 processorid_t cpun = psm_get_cpu_id();
426 uint_t nlvt;
427 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
428 extern void cmi_cmci_trap(void);
429
430 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
431
432 if (apic_mode == LOCAL_APIC) {
433 /*
434 * We are running APIC in MMIO mode.
435 */
436 if (apic_flat_model) {
437 apic_reg_ops->apic_write(APIC_FORMAT_REG,
438 APIC_FLAT_MODEL);
439 } else {
440 apic_reg_ops->apic_write(APIC_FORMAT_REG,
441 APIC_CLUSTER_MODEL);
442 }
443
444 apic_reg_ops->apic_write(APIC_DEST_REG,
445 AV_HIGH_ORDER >> cpun);
446 }
447
448 if (apic_directed_EOI_supported()) {
449 /*
450 * Setting the 12th bit in the Spurious Interrupt Vector
451 * Register suppresses broadcast EOIs generated by the local
452 * APIC. The suppression of broadcast EOIs happens only when
453 * interrupts are level-triggered.
454 */
455 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
456 }
457
458 /* need to enable APIC before unmasking NMI */
459 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
460
461 /*
462 * Presence of an invalid vector with delivery mode AV_FIXED can
463 * cause an error interrupt, even if the entry is masked...so
464 * write a valid vector to LVT entries along with the mask bit
465 */
466
467 /* All APICs have timer and LINT0/1 */
468 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
469 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
470 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */
471
472 /*
473 * On integrated APICs, the number of LVT entries is
474 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
475 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
476 */
477
478 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
479 nlvt = 3;
480 } else {
481 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
482 0xFF) + 1;
483 }
484
485 if (nlvt >= 5) {
486 /* Enable performance counter overflow interrupt */
487
488 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
489 apic_enable_cpcovf_intr = 0;
490 if (apic_enable_cpcovf_intr) {
491 if (apic_cpcovf_vect == 0) {
492 int ipl = APIC_PCINT_IPL;
493
494 apic_cpcovf_vect = apix_get_ipivect(ipl, -1);
495 ASSERT(apic_cpcovf_vect);
496
497 (void) add_avintr(NULL, ipl,
498 (avfunc)kcpc_hw_overflow_intr,
499 "apic pcint", apic_cpcovf_vect,
500 NULL, NULL, NULL, NULL);
501 kcpc_hw_overflow_intr_installed = 1;
502 kcpc_hw_enable_cpc_intr =
503 apic_cpcovf_mask_clear;
504 }
505 apic_reg_ops->apic_write(APIC_PCINT_VECT,
506 apic_cpcovf_vect);
507 }
508 }
509
510 if (nlvt >= 6) {
511 /* Only mask TM intr if the BIOS apparently doesn't use it */
512
513 uint32_t lvtval;
514
515 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
516 if (((lvtval & AV_MASK) == AV_MASK) ||
517 ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
518 apic_reg_ops->apic_write(APIC_THERM_VECT,
519 AV_MASK|APIC_RESV_IRQ);
520 }
521 }
522
523 /* Enable error interrupt */
524
525 if (nlvt >= 4 && apic_enable_error_intr) {
526 if (apic_errvect == 0) {
527 int ipl = 0xf; /* get highest priority intr */
528 apic_errvect = apix_get_ipivect(ipl, -1);
529 ASSERT(apic_errvect);
530 /*
531 * Not PSMI compliant, but we are going to merge
532 * with ON anyway
533 */
534 (void) add_avintr(NULL, ipl,
535 (avfunc)apic_error_intr, "apic error intr",
536 apic_errvect, NULL, NULL, NULL, NULL);
537 }
538 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
539 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
540 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
541 }
542
543 /* Enable CMCI interrupt */
544 if (cmi_enable_cmci) {
545 mutex_enter(&cmci_cpu_setup_lock);
546 if (cmci_cpu_setup_registered == 0) {
547 mutex_enter(&cpu_lock);
548 register_cpu_setup_func(cmci_cpu_setup, NULL);
549 mutex_exit(&cpu_lock);
550 cmci_cpu_setup_registered = 1;
551 }
552 mutex_exit(&cmci_cpu_setup_lock);
553
554 if (apic_cmci_vect == 0) {
555 int ipl = 0x2;
556 apic_cmci_vect = apix_get_ipivect(ipl, -1);
557 ASSERT(apic_cmci_vect);
558
559 (void) add_avintr(NULL, ipl,
560 (avfunc)cmi_cmci_trap, "apic cmci intr",
561 apic_cmci_vect, NULL, NULL, NULL, NULL);
562 }
563 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
564 }
565
566 apic_reg_ops->apic_write_task_reg(0);
567 }
568
569 static void
570 apix_picinit(void)
571 {
572 int i, j;
573 uint_t isr;
574
575 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n"));
576
577 /*
578 * initialize interrupt remapping before apic
579 * hardware initialization
580 */
581 apic_intrmap_init(apic_mode);
582 if (apic_vt_ops == psm_vt_ops)
583 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR;
584
585 /*
586 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
587 * bit on without clearing it with EOI. Since softint
588 * uses vector 0x20 to interrupt itself, so softint will
589 * not work on this machine. In order to fix this problem
590 * a check is made to verify all the isr bits are clear.
591 * If not, EOIs are issued to clear the bits.
592 */
593 for (i = 7; i >= 1; i--) {
594 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
595 if (isr != 0)
596 for (j = 0; ((j < 32) && (isr != 0)); j++)
597 if (isr & (1 << j)) {
598 apic_reg_ops->apic_write(
599 APIC_EOI_REG, 0);
600 isr &= ~(1 << j);
601 apic_error |= APIC_ERR_BOOT_EOI;
602 }
603 }
604
605 /* set a flag so we know we have run apic_picinit() */
606 apic_picinit_called = 1;
607 LOCK_INIT_CLEAR(&apic_gethrtime_lock);
608 LOCK_INIT_CLEAR(&apic_ioapic_lock);
609 LOCK_INIT_CLEAR(&apic_error_lock);
610 LOCK_INIT_CLEAR(&apic_mode_switch_lock);
611
612 picsetup(); /* initialise the 8259 */
613
614 /* add nmi handler - least priority nmi handler */
615 LOCK_INIT_CLEAR(&apic_nmi_lock);
616
617 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
618 "apix NMI handler", (caddr_t)NULL))
619 cmn_err(CE_WARN, "apix: Unable to add nmi handler");
620
621 apix_init_intr();
622
623 /* enable apic mode if imcr present */
624 if (apic_imcrp) {
625 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
626 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
627 }
628
629 ioapix_init_intr(IOAPIC_MASK);
630
631 /* setup global IRM pool if applicable */
632 if (irm_enable)
633 apix_irm_init();
634 }
635
636 static __inline__ void
637 apix_send_eoi(void)
638 {
639 if (apic_mode == LOCAL_APIC)
640 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
641 else
642 X2APIC_WRITE(APIC_EOI_REG, 0);
643 }
644
645 /*
646 * platform_intr_enter
647 *
648 * Called at the beginning of the interrupt service routine, but unlike
649 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt
650 * controller to enable other HW interrupts but interrupts are still
651 * masked by the IF flag.
652 *
653 * Return -1 for spurious interrupts
654 *
655 */
656 static int
657 apix_intr_enter(int ipl, int *vectorp)
658 {
659 struct cpu *cpu = CPU;
660 uint32_t cpuid = CPU->cpu_id;
661 apic_cpus_info_t *cpu_infop;
662 uchar_t vector;
663 apix_vector_t *vecp;
664 int nipl = -1;
665
666 /*
667 * The real vector delivered is (*vectorp + 0x20), but our caller
668 * subtracts 0x20 from the vector before passing it to us.
669 * (That's why APIC_BASE_VECT is 0x20.)
670 */
671 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT;
672
673 cpu_infop = &apic_cpus[cpuid];
674 if (vector == APIC_SPUR_INTR) {
675 cpu_infop->aci_spur_cnt++;
676 return (APIC_INT_SPURIOUS);
677 }
678
679 vecp = xv_vector(cpuid, vector);
680 if (vecp == NULL) {
681 if (APIX_IS_FAKE_INTR(vector))
682 nipl = apix_rebindinfo.i_pri;
683 apix_send_eoi();
684 return (nipl);
685 }
686 nipl = vecp->v_pri;
687
688 /* if interrupted by the clock, increment apic_nsec_since_boot */
689 if (vector == (apic_clkvect + APIC_BASE_VECT)) {
690 if (!apic_oneshot) {
691 /* NOTE: this is not MT aware */
692 apic_hrtime_stamp++;
693 apic_nsec_since_boot += apic_nsec_per_intr;
694 apic_hrtime_stamp++;
695 last_count_read = apic_hertz_count;
696 apix_redistribute_compute();
697 }
698
699 apix_send_eoi();
700
701 return (nipl);
702 }
703
704 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED);
705
706 /* pre-EOI handling for level-triggered interrupts */
707 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) &&
708 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum])
709 apix_level_intr_pre_eoi(vecp->v_inum);
710
711 /* send back EOI */
712 apix_send_eoi();
713
714 cpu_infop->aci_current[nipl] = vector;
715 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) {
716 cpu_infop->aci_curipl = (uchar_t)nipl;
717 cpu_infop->aci_ISR_in_progress |= 1 << nipl;
718 }
719
720 #ifdef DEBUG
721 if (vector >= APIX_IPI_MIN)
722 return (nipl); /* skip IPI */
723
724 APIC_DEBUG_BUF_PUT(vector);
725 APIC_DEBUG_BUF_PUT(vecp->v_inum);
726 APIC_DEBUG_BUF_PUT(nipl);
727 APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
728 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
729 drv_usecwait(apic_stretch_interrupts);
730 #endif /* DEBUG */
731
732 return (nipl);
733 }
734
735 /*
736 * Any changes made to this function must also change X2APIC
737 * version of intr_exit.
738 */
739 static void
740 apix_intr_exit(int prev_ipl, int arg2)
741 {
742 int cpuid = psm_get_cpu_id();
743 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid];
744 apix_impl_t *apixp = apixs[cpuid];
745
746 UNREFERENCED_1PARAMETER(arg2);
747
748 cpu_infop->aci_curipl = (uchar_t)prev_ipl;
749 /* ISR above current pri could not be in progress */
750 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
751
752 if (apixp->x_obsoletes != NULL) {
753 if (APIX_CPU_LOCK_HELD(cpuid))
754 return;
755
756 APIX_ENTER_CPU_LOCK(cpuid);
757 (void) apix_obsolete_vector(apixp->x_obsoletes);
758 APIX_LEAVE_CPU_LOCK(cpuid);
759 }
760 }
761
762 /*
763 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the
764 * given ipl, but apix never uses the TPR and we never mask a subset of the
765 * interrupts. They are either all blocked by the IF flag or all can come in.
766 *
767 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts
768 * can come in if currently enabled by the IF flag. This table shows the state
769 * of the IF flag when we leave this function.
770 *
771 * curr IF | ipl == 15 ipl != 15
772 * --------+---------------------------
773 * 0 | 0 0
774 * 1 | 0 1
775 */
776 static void
777 apix_setspl(int ipl)
778 {
779 /*
780 * Interrupts at ipl above this cannot be in progress, so the following
781 * mask is ok.
782 */
783 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
784
785 if (ipl == XC_HI_PIL)
786 cli();
787 }
788
789 int
790 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl)
791 {
792 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
793 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
794 apix_vector_t *vecp = xv_vector(cpuid, vector);
795
796 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
797 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
798
799 if (vecp->v_type == APIX_TYPE_FIXED)
800 apix_intx_set_shared(vecp->v_inum, 1);
801
802 /* There are more interrupts, so it's already been enabled */
803 if (vecp->v_share > 1)
804 return (PSM_SUCCESS);
805
806 /* return if it is not hardware interrupt */
807 if (vecp->v_type == APIX_TYPE_IPI)
808 return (PSM_SUCCESS);
809
810 /*
811 * if apix_picinit() has not been called yet, just return.
812 * At the end of apic_picinit(), we will call setup_io_intr().
813 */
814 if (!apic_picinit_called)
815 return (PSM_SUCCESS);
816
817 (void) apix_setup_io_intr(vecp);
818
819 return (PSM_SUCCESS);
820 }
821
822 int
823 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl)
824 {
825 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
826 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
827 apix_vector_t *vecp = xv_vector(cpuid, vector);
828
829 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
830 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
831
832 if (vecp->v_type == APIX_TYPE_FIXED)
833 apix_intx_set_shared(vecp->v_inum, -1);
834
835 /* There are more interrupts */
836 if (vecp->v_share > 1)
837 return (PSM_SUCCESS);
838
839 /* return if it is not hardware interrupt */
840 if (vecp->v_type == APIX_TYPE_IPI)
841 return (PSM_SUCCESS);
842
843 if (!apic_picinit_called) {
844 cmn_err(CE_WARN, "apix: delete 0x%x before apic init",
845 virtvec);
846 return (PSM_SUCCESS);
847 }
848
849 apix_disable_vector(vecp);
850
851 return (PSM_SUCCESS);
852 }
853
854 /*
855 * Try and disable all interrupts. We just assign interrupts to other
856 * processors based on policy. If any were bound by user request, we
857 * let them continue and return failure. We do not bother to check
858 * for cache affinity while rebinding.
859 */
860 static int
861 apix_disable_intr(processorid_t cpun)
862 {
863 apix_impl_t *apixp = apixs[cpun];
864 apix_vector_t *vecp, *newp;
865 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type;
866
867 lock_set(&apix_lock);
868
869 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
870 apic_cpus[cpun].aci_curipl = 0;
871
872 /* if this is for SUSPEND operation, skip rebinding */
873 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
874 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
875 vecp = apixp->x_vectbl[i];
876 if (!IS_VECT_ENABLED(vecp))
877 continue;
878
879 apix_disable_vector(vecp);
880 }
881 lock_clear(&apix_lock);
882 return (PSM_SUCCESS);
883 }
884
885 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
886 vecp = apixp->x_vectbl[i];
887 if (!IS_VECT_ENABLED(vecp))
888 continue;
889
890 if (vecp->v_flags & APIX_VECT_USER_BOUND) {
891 hardbound++;
892 continue;
893 }
894 type = vecp->v_type;
895
896 /*
897 * If there are bound interrupts on this cpu, then
898 * rebind them to other processors.
899 */
900 loop = 0;
901 do {
902 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE);
903
904 if (type != APIX_TYPE_MSI)
905 newp = apix_set_cpu(vecp, bindcpu, &ret);
906 else
907 newp = apix_grp_set_cpu(vecp, bindcpu, &ret);
908 } while ((newp == NULL) && (loop++ < apic_nproc));
909
910 if (loop >= apic_nproc) {
911 errbound++;
912 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x",
913 vecp->v_cpuid, vecp->v_vector);
914 }
915 }
916
917 lock_clear(&apix_lock);
918
919 if (hardbound || errbound) {
920 cmn_err(CE_WARN, "Could not disable interrupts on %d"
921 "due to user bound interrupts or failed operation",
922 cpun);
923 return (PSM_FAILURE);
924 }
925
926 return (PSM_SUCCESS);
927 }
928
929 /*
930 * Bind interrupts to specified CPU
931 */
932 static void
933 apix_enable_intr(processorid_t cpun)
934 {
935 apix_vector_t *vecp;
936 int i, ret;
937 processorid_t n;
938
939 lock_set(&apix_lock);
940
941 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
942
943 /* interrupt enabling for system resume */
944 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
945 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
946 vecp = xv_vector(cpun, i);
947 if (!IS_VECT_ENABLED(vecp))
948 continue;
949
950 apix_enable_vector(vecp);
951 }
952 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
953 }
954
955 for (n = 0; n < apic_nproc; n++) {
956 if (!apic_cpu_in_range(n) || n == cpun ||
957 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0)
958 continue;
959
960 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
961 vecp = xv_vector(n, i);
962 if (!IS_VECT_ENABLED(vecp) ||
963 vecp->v_bound_cpuid != cpun)
964 continue;
965
966 if (vecp->v_type != APIX_TYPE_MSI)
967 (void) apix_set_cpu(vecp, cpun, &ret);
968 else
969 (void) apix_grp_set_cpu(vecp, cpun, &ret);
970 }
971 }
972
973 lock_clear(&apix_lock);
974 }
975
976 /*
977 * Allocate vector for IPI
978 * type == -1 indicates it is an internal request. Do not change
979 * resv_vector for these requests.
980 */
981 static int
982 apix_get_ipivect(int ipl, int type)
983 {
984 uchar_t vector;
985
986 if ((vector = apix_alloc_ipi(ipl)) > 0) {
987 if (type != -1)
988 apic_resv_vector[ipl] = vector;
989 return (vector);
990 }
991 apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
992 return (-1); /* shouldn't happen */
993 }
994
995 static int
996 apix_get_clkvect(int ipl)
997 {
998 int vector;
999
1000 if ((vector = apix_get_ipivect(ipl, -1)) == -1)
1001 return (-1);
1002
1003 apic_clkvect = vector - APIC_BASE_VECT;
1004 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n",
1005 apic_clkvect));
1006 return (vector);
1007 }
1008
1009 static int
1010 apix_post_cpu_start()
1011 {
1012 int cpun;
1013 static int cpus_started = 1;
1014
1015 /* We know this CPU + BSP started successfully. */
1016 cpus_started++;
1017
1018 /*
1019 * On BSP we would have enabled X2APIC, if supported by processor,
1020 * in acpi_probe(), but on AP we do it here.
1021 *
1022 * We enable X2APIC mode only if BSP is running in X2APIC & the
1023 * local APIC mode of the current CPU is MMIO (xAPIC).
1024 */
1025 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1026 apic_local_mode() == LOCAL_APIC) {
1027 apic_enable_x2apic();
1028 }
1029
1030 /*
1031 * Switch back to x2apic IPI sending method for performance when target
1032 * CPU has entered x2apic mode.
1033 */
1034 if (apic_mode == LOCAL_X2APIC) {
1035 apic_switch_ipi_callback(B_FALSE);
1036 }
1037
1038 splx(ipltospl(LOCK_LEVEL));
1039 apix_init_intr();
1040
1041 /*
1042 * since some systems don't enable the internal cache on the non-boot
1043 * cpus, so we have to enable them here
1044 */
1045 setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1046
1047 #ifdef DEBUG
1048 APIC_AV_PENDING_SET();
1049 #else
1050 if (apic_mode == LOCAL_APIC)
1051 APIC_AV_PENDING_SET();
1052 #endif /* DEBUG */
1053
1054 /*
1055 * We may be booting, or resuming from suspend; aci_status will
1056 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1057 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1058 */
1059 cpun = psm_get_cpu_id();
1060 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1061
1062 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1063
1064 return (PSM_SUCCESS);
1065 }
1066
1067 /*
1068 * If this module needs a periodic handler for the interrupt distribution, it
1069 * can be added here. The argument to the periodic handler is not currently
1070 * used, but is reserved for future.
1071 */
1072 static void
1073 apix_post_cyclic_setup(void *arg)
1074 {
1075 UNREFERENCED_1PARAMETER(arg);
1076
1077 cyc_handler_t cyh;
1078 cyc_time_t cyt;
1079
1080 /* cpu_lock is held */
1081 /* set up a periodic handler for intr redistribution */
1082
1083 /*
1084 * In peridoc mode intr redistribution processing is done in
1085 * apic_intr_enter during clk intr processing
1086 */
1087 if (!apic_oneshot)
1088 return;
1089
1090 /*
1091 * Register a periodical handler for the redistribution processing.
1092 * Though we would generally prefer to use the DDI interface for
1093 * periodic handler invocation, ddi_periodic_add(9F), we are
1094 * unfortunately already holding cpu_lock, which ddi_periodic_add will
1095 * attempt to take for us. Thus, we add our own cyclic directly:
1096 */
1097 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute;
1098 cyh.cyh_arg = NULL;
1099 cyh.cyh_level = CY_LOW_LEVEL;
1100
1101 cyt.cyt_when = 0;
1102 cyt.cyt_interval = apic_redistribute_sample_interval;
1103
1104 apic_cyclic_id = cyclic_add(&cyh, &cyt);
1105 }
1106
1107 /*
1108 * Called the first time we enable x2apic mode on this cpu.
1109 * Update some of the function pointers to use x2apic routines.
1110 */
1111 void
1112 x2apic_update_psm()
1113 {
1114 struct psm_ops *pops = &apix_ops;
1115
1116 ASSERT(pops != NULL);
1117
1118 /*
1119 * The pcplusmp module's version of x2apic_update_psm makes additional
1120 * changes that we do not have to make here. It needs to make those
1121 * changes because pcplusmp relies on the TPR register and the means of
1122 * addressing that changes when using the local apic versus the x2apic.
1123 * It's also worth noting that the apix driver specific function end up
1124 * being apix_foo as opposed to apic_foo and x2apic_foo.
1125 */
1126 pops->psm_send_ipi = x2apic_send_ipi;
1127
1128 send_dirintf = pops->psm_send_ipi;
1129
1130 apic_mode = LOCAL_X2APIC;
1131 apic_change_ops();
1132 }
1133
1134 /*
1135 * This function provides external interface to the nexus for all
1136 * functionalities related to the new DDI interrupt framework.
1137 *
1138 * Input:
1139 * dip - pointer to the dev_info structure of the requested device
1140 * hdlp - pointer to the internal interrupt handle structure for the
1141 * requested interrupt
1142 * intr_op - opcode for this call
1143 * result - pointer to the integer that will hold the result to be
1144 * passed back if return value is PSM_SUCCESS
1145 *
1146 * Output:
1147 * return value is either PSM_SUCCESS or PSM_FAILURE
1148 */
1149 static int
1150 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1151 psm_intr_op_t intr_op, int *result)
1152 {
1153 int cap;
1154 apix_vector_t *vecp, *newvecp;
1155 struct intrspec *ispec, intr_spec;
1156 processorid_t target;
1157
1158 ispec = &intr_spec;
1159 ispec->intrspec_pri = hdlp->ih_pri;
1160 ispec->intrspec_vec = hdlp->ih_inum;
1161 ispec->intrspec_func = hdlp->ih_cb_func;
1162
1163 switch (intr_op) {
1164 case PSM_INTR_OP_ALLOC_VECTORS:
1165 switch (hdlp->ih_type) {
1166 case DDI_INTR_TYPE_MSI:
1167 /* allocate MSI vectors */
1168 *result = apix_alloc_msi(dip, hdlp->ih_inum,
1169 hdlp->ih_scratch1,
1170 (int)(uintptr_t)hdlp->ih_scratch2);
1171 break;
1172 case DDI_INTR_TYPE_MSIX:
1173 /* allocate MSI-X vectors */
1174 *result = apix_alloc_msix(dip, hdlp->ih_inum,
1175 hdlp->ih_scratch1,
1176 (int)(uintptr_t)hdlp->ih_scratch2);
1177 break;
1178 case DDI_INTR_TYPE_FIXED:
1179 /* allocate or share vector for fixed */
1180 if ((ihdl_plat_t *)hdlp->ih_private == NULL) {
1181 return (PSM_FAILURE);
1182 }
1183 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1184 *result = apix_intx_alloc_vector(dip, hdlp->ih_inum,
1185 ispec);
1186 break;
1187 default:
1188 return (PSM_FAILURE);
1189 }
1190 break;
1191 case PSM_INTR_OP_FREE_VECTORS:
1192 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
1193 hdlp->ih_type);
1194 break;
1195 case PSM_INTR_OP_XLATE_VECTOR:
1196 /*
1197 * Vectors are allocated by ALLOC and freed by FREE.
1198 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector).
1199 */
1200 *result = APIX_INVALID_VECT;
1201 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1202 if (vecp != NULL) {
1203 *result = APIX_VIRTVECTOR(vecp->v_cpuid,
1204 vecp->v_vector);
1205 break;
1206 }
1207
1208 /*
1209 * No vector to device mapping exists. If this is FIXED type
1210 * then check if this IRQ is already mapped for another device
1211 * then return the vector number for it (i.e. shared IRQ case).
1212 * Otherwise, return PSM_FAILURE.
1213 */
1214 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
1215 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum,
1216 ispec);
1217 *result = (vecp == NULL) ? APIX_INVALID_VECT :
1218 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector);
1219 }
1220 if (*result == APIX_INVALID_VECT)
1221 return (PSM_FAILURE);
1222 break;
1223 case PSM_INTR_OP_GET_PENDING:
1224 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1225 if (vecp == NULL)
1226 return (PSM_FAILURE);
1227
1228 *result = apix_get_pending(vecp);
1229 break;
1230 case PSM_INTR_OP_CLEAR_MASK:
1231 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1232 return (PSM_FAILURE);
1233
1234 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1235 if (vecp == NULL)
1236 return (PSM_FAILURE);
1237
1238 apix_intx_clear_mask(vecp->v_inum);
1239 break;
1240 case PSM_INTR_OP_SET_MASK:
1241 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1242 return (PSM_FAILURE);
1243
1244 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1245 if (vecp == NULL)
1246 return (PSM_FAILURE);
1247
1248 apix_intx_set_mask(vecp->v_inum);
1249 break;
1250 case PSM_INTR_OP_GET_SHARED:
1251 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1252 return (PSM_FAILURE);
1253
1254 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1255 if (vecp == NULL)
1256 return (PSM_FAILURE);
1257
1258 *result = apix_intx_get_shared(vecp->v_inum);
1259 break;
1260 case PSM_INTR_OP_SET_PRI:
1261 /*
1262 * Called prior to adding the interrupt handler or when
1263 * an interrupt handler is unassigned.
1264 */
1265 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1266 return (PSM_SUCCESS);
1267
1268 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL)
1269 return (PSM_FAILURE);
1270
1271 break;
1272 case PSM_INTR_OP_SET_CPU:
1273 case PSM_INTR_OP_GRP_SET_CPU:
1274 /*
1275 * The interrupt handle given here has been allocated
1276 * specifically for this command, and ih_private carries
1277 * a CPU value.
1278 */
1279 *result = EINVAL;
1280 target = (int)(intptr_t)hdlp->ih_private;
1281 if (!apic_cpu_in_range(target)) {
1282 DDI_INTR_IMPLDBG((CE_WARN,
1283 "[grp_]set_cpu: cpu out of range: %d\n", target));
1284 return (PSM_FAILURE);
1285 }
1286
1287 lock_set(&apix_lock);
1288
1289 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags);
1290 if (!IS_VECT_ENABLED(vecp)) {
1291 DDI_INTR_IMPLDBG((CE_WARN,
1292 "[grp]_set_cpu: invalid vector 0x%x\n",
1293 hdlp->ih_vector));
1294 lock_clear(&apix_lock);
1295 return (PSM_FAILURE);
1296 }
1297
1298 *result = 0;
1299
1300 if (intr_op == PSM_INTR_OP_SET_CPU)
1301 newvecp = apix_set_cpu(vecp, target, result);
1302 else
1303 newvecp = apix_grp_set_cpu(vecp, target, result);
1304
1305 lock_clear(&apix_lock);
1306
1307 if (newvecp == NULL) {
1308 *result = EIO;
1309 return (PSM_FAILURE);
1310 }
1311 newvecp->v_bound_cpuid = target;
1312 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid,
1313 newvecp->v_vector);
1314 break;
1315
1316 case PSM_INTR_OP_GET_INTR:
1317 /*
1318 * The interrupt handle given here has been allocated
1319 * specifically for this command, and ih_private carries
1320 * a pointer to a apic_get_intr_t.
1321 */
1322 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS)
1323 return (PSM_FAILURE);
1324 break;
1325
1326 case PSM_INTR_OP_CHECK_MSI:
1327 /*
1328 * Check MSI/X is supported or not at APIC level and
1329 * masked off the MSI/X bits in hdlp->ih_type if not
1330 * supported before return. If MSI/X is supported,
1331 * leave the ih_type unchanged and return.
1332 *
1333 * hdlp->ih_type passed in from the nexus has all the
1334 * interrupt types supported by the device.
1335 */
1336 if (apic_support_msi == 0) { /* uninitialized */
1337 /*
1338 * if apic_support_msi is not set, call
1339 * apic_check_msi_support() to check whether msi
1340 * is supported first
1341 */
1342 if (apic_check_msi_support() == PSM_SUCCESS)
1343 apic_support_msi = 1; /* supported */
1344 else
1345 apic_support_msi = -1; /* not-supported */
1346 }
1347 if (apic_support_msi == 1) {
1348 if (apic_msix_enable)
1349 *result = hdlp->ih_type;
1350 else
1351 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
1352 } else
1353 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1354 DDI_INTR_TYPE_MSIX);
1355 break;
1356 case PSM_INTR_OP_GET_CAP:
1357 cap = DDI_INTR_FLAG_PENDING;
1358 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1359 cap |= DDI_INTR_FLAG_MASKABLE;
1360 *result = cap;
1361 break;
1362 case PSM_INTR_OP_APIC_TYPE:
1363 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type =
1364 apix_get_apic_type();
1365 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr =
1366 APIX_IPI_MIN;
1367 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu =
1368 apic_nproc;
1369 hdlp->ih_ver = apic_get_apic_version();
1370 break;
1371 case PSM_INTR_OP_SET_CAP:
1372 default:
1373 return (PSM_FAILURE);
1374 }
1375
1376 return (PSM_SUCCESS);
1377 }
1378
1379 static void
1380 apix_cleanup_busy(void)
1381 {
1382 int i, j;
1383 apix_vector_t *vecp;
1384
1385 for (i = 0; i < apic_nproc; i++) {
1386 if (!apic_cpu_in_range(i))
1387 continue;
1388 apic_cpus[i].aci_busy = 0;
1389 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) {
1390 if ((vecp = xv_vector(i, j)) != NULL)
1391 vecp->v_busy = 0;
1392 }
1393 }
1394 }
1395
1396 static void
1397 apix_redistribute_compute(void)
1398 {
1399 int i, j, max_busy;
1400
1401 if (!apic_enable_dynamic_migration)
1402 return;
1403
1404 if (++apic_nticks == apic_sample_factor_redistribution) {
1405 /*
1406 * Time to call apic_intr_redistribute().
1407 * reset apic_nticks. This will cause max_busy
1408 * to be calculated below and if it is more than
1409 * apic_int_busy, we will do the whole thing
1410 */
1411 apic_nticks = 0;
1412 }
1413 max_busy = 0;
1414 for (i = 0; i < apic_nproc; i++) {
1415 if (!apic_cpu_in_range(i))
1416 continue;
1417 /*
1418 * Check if curipl is non zero & if ISR is in
1419 * progress
1420 */
1421 if (((j = apic_cpus[i].aci_curipl) != 0) &&
1422 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1423
1424 int vect;
1425 apic_cpus[i].aci_busy++;
1426 vect = apic_cpus[i].aci_current[j];
1427 apixs[i]->x_vectbl[vect]->v_busy++;
1428 }
1429
1430 if (!apic_nticks &&
1431 (apic_cpus[i].aci_busy > max_busy))
1432 max_busy = apic_cpus[i].aci_busy;
1433 }
1434 if (!apic_nticks) {
1435 if (max_busy > apic_int_busy_mark) {
1436 /*
1437 * We could make the following check be
1438 * skipped > 1 in which case, we get a
1439 * redistribution at half the busy mark (due to
1440 * double interval). Need to be able to collect
1441 * more empirical data to decide if that is a
1442 * good strategy. Punt for now.
1443 */
1444 apix_cleanup_busy();
1445 apic_skipped_redistribute = 0;
1446 } else
1447 apic_skipped_redistribute++;
1448 }
1449 }
1450
1451 /*
1452 * intr_ops() service routines
1453 */
1454
1455 static int
1456 apix_get_pending(apix_vector_t *vecp)
1457 {
1458 int bit, index, irr, pending;
1459
1460 /* need to get on the bound cpu */
1461 mutex_enter(&cpu_lock);
1462 affinity_set(vecp->v_cpuid);
1463
1464 index = vecp->v_vector / 32;
1465 bit = vecp->v_vector % 32;
1466 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
1467
1468 affinity_clear();
1469 mutex_exit(&cpu_lock);
1470
1471 pending = (irr & (1 << bit)) ? 1 : 0;
1472 if (!pending && vecp->v_type == APIX_TYPE_FIXED)
1473 pending = apix_intx_get_pending(vecp->v_inum);
1474
1475 return (pending);
1476 }
1477
1478 static apix_vector_t *
1479 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags)
1480 {
1481 apix_vector_t *vecp;
1482 processorid_t cpuid;
1483 int32_t virt_vec = 0;
1484
1485 switch (flags & PSMGI_INTRBY_FLAGS) {
1486 case PSMGI_INTRBY_IRQ:
1487 return (apix_intx_get_vector(hdlp->ih_vector));
1488 case PSMGI_INTRBY_VEC:
1489 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec;
1490
1491 cpuid = APIX_VIRTVEC_CPU(virt_vec);
1492 if (!apic_cpu_in_range(cpuid))
1493 return (NULL);
1494
1495 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec));
1496 break;
1497 case PSMGI_INTRBY_DEFAULT:
1498 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum,
1499 hdlp->ih_type);
1500 break;
1501 default:
1502 return (NULL);
1503 }
1504
1505 return (vecp);
1506 }
1507
1508 static int
1509 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp,
1510 apic_get_intr_t *intr_params_p)
1511 {
1512 apix_vector_t *vecp;
1513 struct autovec *av_dev;
1514 int i;
1515
1516 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags);
1517 if (IS_VECT_FREE(vecp)) {
1518 intr_params_p->avgi_num_devs = 0;
1519 intr_params_p->avgi_cpu_id = 0;
1520 intr_params_p->avgi_req_flags = 0;
1521 return (PSM_SUCCESS);
1522 }
1523
1524 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
1525 intr_params_p->avgi_cpu_id = vecp->v_cpuid;
1526
1527 /* Return user bound info for intrd. */
1528 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
1529 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
1530 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
1531 }
1532 }
1533
1534 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
1535 intr_params_p->avgi_vector = vecp->v_vector;
1536
1537 if (intr_params_p->avgi_req_flags &
1538 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
1539 /* Get number of devices from apic_irq table shared field. */
1540 intr_params_p->avgi_num_devs = vecp->v_share;
1541
1542 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) {
1543
1544 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS;
1545
1546 /* Some devices have NULL dip. Don't count these. */
1547 if (intr_params_p->avgi_num_devs > 0) {
1548 for (i = 0, av_dev = vecp->v_autovect; av_dev;
1549 av_dev = av_dev->av_link) {
1550 if (av_dev->av_vector && av_dev->av_dip)
1551 i++;
1552 }
1553 intr_params_p->avgi_num_devs =
1554 (uint8_t)MIN(intr_params_p->avgi_num_devs, i);
1555 }
1556
1557 /* There are no viable dips to return. */
1558 if (intr_params_p->avgi_num_devs == 0) {
1559 intr_params_p->avgi_dip_list = NULL;
1560
1561 } else { /* Return list of dips */
1562
1563 /* Allocate space in array for that number of devs. */
1564 intr_params_p->avgi_dip_list = kmem_zalloc(
1565 intr_params_p->avgi_num_devs *
1566 sizeof (dev_info_t *),
1567 KM_NOSLEEP);
1568 if (intr_params_p->avgi_dip_list == NULL) {
1569 DDI_INTR_IMPLDBG((CE_WARN,
1570 "apix_get_vector_intr_info: no memory"));
1571 return (PSM_FAILURE);
1572 }
1573
1574 /*
1575 * Loop through the device list of the autovec table
1576 * filling in the dip array.
1577 *
1578 * Note that the autovect table may have some special
1579 * entries which contain NULL dips. These will be
1580 * ignored.
1581 */
1582 for (i = 0, av_dev = vecp->v_autovect; av_dev;
1583 av_dev = av_dev->av_link) {
1584 if (av_dev->av_vector && av_dev->av_dip)
1585 intr_params_p->avgi_dip_list[i++] =
1586 av_dev->av_dip;
1587 }
1588 }
1589 }
1590
1591 return (PSM_SUCCESS);
1592 }
1593
1594 static char *
1595 apix_get_apic_type(void)
1596 {
1597 return (apix_psm_info.p_mach_idstring);
1598 }
1599
1600 apix_vector_t *
1601 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1602 {
1603 apix_vector_t *newp = NULL;
1604 dev_info_t *dip;
1605 int inum, cap_ptr;
1606 ddi_acc_handle_t handle;
1607 ddi_intr_msix_t *msix_p = NULL;
1608 ushort_t msix_ctrl;
1609 uintptr_t off;
1610 uint32_t mask;
1611
1612 ASSERT(LOCK_HELD(&apix_lock));
1613 *result = ENXIO;
1614
1615 /* Fail if this is an MSI intr and is part of a group. */
1616 if (vecp->v_type == APIX_TYPE_MSI) {
1617 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1)
1618 return (NULL);
1619 else
1620 return (apix_grp_set_cpu(vecp, new_cpu, result));
1621 }
1622
1623 /*
1624 * Mask MSI-X. It's unmasked when MSI-X gets enabled.
1625 */
1626 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) {
1627 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1628 return (NULL);
1629 inum = vecp->v_devp->dv_inum;
1630
1631 handle = i_ddi_get_pci_config_handle(dip);
1632 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1633 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
1634 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) {
1635 /*
1636 * Function is not masked, then mask "inum"th
1637 * entry in the MSI-X table
1638 */
1639 msix_p = i_ddi_get_msix(dip);
1640 off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
1641 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
1642 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
1643 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off,
1644 mask | 1);
1645 }
1646 }
1647
1648 *result = 0;
1649 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL)
1650 *result = EIO;
1651
1652 /* Restore mask bit */
1653 if (msix_p != NULL)
1654 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask);
1655
1656 return (newp);
1657 }
1658
1659 /*
1660 * Set cpu for MSIs
1661 */
1662 apix_vector_t *
1663 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1664 {
1665 apix_vector_t *newp, *vp;
1666 uint32_t orig_cpu = vecp->v_cpuid;
1667 int orig_vect = vecp->v_vector;
1668 int i, num_vectors, cap_ptr, msi_mask_off;
1669 uint32_t msi_pvm;
1670 ushort_t msi_ctrl;
1671 ddi_acc_handle_t handle;
1672 dev_info_t *dip;
1673
1674 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x,"
1675 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu));
1676
1677 ASSERT(LOCK_HELD(&apix_lock));
1678
1679 *result = ENXIO;
1680
1681 if (vecp->v_type != APIX_TYPE_MSI) {
1682 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n"));
1683 return (NULL);
1684 }
1685
1686 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1687 return (NULL);
1688
1689 num_vectors = i_ddi_intr_get_current_nintrs(dip);
1690 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) {
1691 APIC_VERBOSE(INTR, (CE_WARN,
1692 "set_grp: base vec not part of a grp or not aligned: "
1693 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors));
1694 return (NULL);
1695 }
1696
1697 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type))
1698 return (NULL);
1699
1700 *result = EIO;
1701 for (i = 1; i < num_vectors; i++) {
1702 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL)
1703 return (NULL);
1704 #ifdef DEBUG
1705 /*
1706 * Sanity check: CPU and dip is the same for all entries.
1707 * May be called when first msi to be enabled, at this time
1708 * add_avintr() is not called for other msi
1709 */
1710 if ((vp->v_share != 0) &&
1711 ((APIX_GET_DIP(vp) != dip) ||
1712 (vp->v_cpuid != vecp->v_cpuid))) {
1713 APIC_VERBOSE(INTR, (CE_WARN,
1714 "set_grp: cpu or dip for vec 0x%x difft than for "
1715 "vec 0x%x\n", orig_vect, orig_vect + i));
1716 APIC_VERBOSE(INTR, (CE_WARN,
1717 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
1718 vp->v_cpuid, (void *)dip,
1719 (void *)APIX_GET_DIP(vp)));
1720 return (NULL);
1721 }
1722 #endif /* DEBUG */
1723 }
1724
1725 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1726 handle = i_ddi_get_pci_config_handle(dip);
1727 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1728
1729 /* MSI Per vector masking is supported. */
1730 if (msi_ctrl & PCI_MSI_PVM_MASK) {
1731 if (msi_ctrl & PCI_MSI_64BIT_MASK)
1732 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
1733 else
1734 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
1735 msi_pvm = pci_config_get32(handle, msi_mask_off);
1736 pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
1737 APIC_VERBOSE(INTR, (CE_CONT,
1738 "set_grp: pvm supported. Mask set to 0x%x\n",
1739 pci_config_get32(handle, msi_mask_off)));
1740 }
1741
1742 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL)
1743 *result = 0;
1744
1745 /* Reenable vectors if per vector masking is supported. */
1746 if (msi_ctrl & PCI_MSI_PVM_MASK) {
1747 pci_config_put32(handle, msi_mask_off, msi_pvm);
1748 APIC_VERBOSE(INTR, (CE_CONT,
1749 "set_grp: pvm supported. Mask restored to 0x%x\n",
1750 pci_config_get32(handle, msi_mask_off)));
1751 }
1752
1753 return (newp);
1754 }
1755
1756 void
1757 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector)
1758 {
1759 apic_irq_t *irqp;
1760
1761 mutex_enter(&airq_mutex);
1762 irqp = apic_irq_table[irqno];
1763 irqp->airq_cpu = cpuid;
1764 irqp->airq_vector = vector;
1765 apic_record_rdt_entry(irqp, irqno);
1766 mutex_exit(&airq_mutex);
1767 }
1768
1769 apix_vector_t *
1770 apix_intx_get_vector(int irqno)
1771 {
1772 apic_irq_t *irqp;
1773 uint32_t cpuid;
1774 uchar_t vector;
1775
1776 mutex_enter(&airq_mutex);
1777 irqp = apic_irq_table[irqno & 0xff];
1778 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
1779 mutex_exit(&airq_mutex);
1780 return (NULL);
1781 }
1782 cpuid = irqp->airq_cpu;
1783 vector = irqp->airq_vector;
1784 mutex_exit(&airq_mutex);
1785
1786 return (xv_vector(cpuid, vector));
1787 }
1788
1789 /*
1790 * Must called with interrupts disabled and apic_ioapic_lock held
1791 */
1792 void
1793 apix_intx_enable(int irqno)
1794 {
1795 uchar_t ioapicindex, intin;
1796 apic_irq_t *irqp = apic_irq_table[irqno];
1797 ioapic_rdt_t irdt;
1798 apic_cpus_info_t *cpu_infop;
1799 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector);
1800
1801 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1802
1803 ioapicindex = irqp->airq_ioapicindex;
1804 intin = irqp->airq_intin_no;
1805 cpu_infop = &apic_cpus[irqp->airq_cpu];
1806
1807 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry;
1808 irdt.ir_hi = cpu_infop->aci_local_id;
1809
1810 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL,
1811 vecp->v_type, 1, ioapicindex);
1812 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private,
1813 (void *)&irdt, vecp->v_type, 1);
1814 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt);
1815
1816 /* write RDT entry high dword - destination */
1817 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin,
1818 irdt.ir_hi);
1819
1820 /* Write the vector, trigger, and polarity portion of the RDT */
1821 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo);
1822
1823 vecp->v_state = APIX_STATE_ENABLED;
1824
1825 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x"
1826 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n",
1827 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi));
1828 }
1829
1830 /*
1831 * Must called with interrupts disabled and apic_ioapic_lock held
1832 */
1833 void
1834 apix_intx_disable(int irqno)
1835 {
1836 apic_irq_t *irqp = apic_irq_table[irqno];
1837 int ioapicindex, intin;
1838
1839 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1840 /*
1841 * The assumption here is that this is safe, even for
1842 * systems with IOAPICs that suffer from the hardware
1843 * erratum because all devices have been quiesced before
1844 * they unregister their interrupt handlers. If that
1845 * assumption turns out to be false, this mask operation
1846 * can induce the same erratum result we're trying to
1847 * avoid.
1848 */
1849 ioapicindex = irqp->airq_ioapicindex;
1850 intin = irqp->airq_intin_no;
1851 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK);
1852
1853 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x"
1854 " intin 0x%x\n", ioapicindex, intin));
1855 }
1856
1857 void
1858 apix_intx_free(int irqno)
1859 {
1860 apic_irq_t *irqp;
1861
1862 mutex_enter(&airq_mutex);
1863 irqp = apic_irq_table[irqno];
1864
1865 if (IS_IRQ_FREE(irqp)) {
1866 mutex_exit(&airq_mutex);
1867 return;
1868 }
1869
1870 irqp->airq_mps_intr_index = FREE_INDEX;
1871 irqp->airq_cpu = IRQ_UNINIT;
1872 irqp->airq_vector = APIX_INVALID_VECT;
1873 mutex_exit(&airq_mutex);
1874 }
1875
1876 #ifdef DEBUG
1877 int apix_intr_deliver_timeouts = 0;
1878 int apix_intr_rirr_timeouts = 0;
1879 int apix_intr_rirr_reset_failure = 0;
1880 #endif
1881 int apix_max_reps_irr_pending = 10;
1882
1883 #define GET_RDT_BITS(ioapic, intin, bits) \
1884 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits))
1885 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000)
1886
1887 int
1888 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector)
1889 {
1890 apic_irq_t *irqp = apic_irq_table[irqno];
1891 ulong_t iflag;
1892 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked;
1893
1894 ASSERT(irqp != NULL);
1895
1896 iflag = intr_clear();
1897 lock_set(&apic_ioapic_lock);
1898
1899 ioapic_ix = irqp->airq_ioapicindex;
1900 intin_no = irqp->airq_intin_no;
1901 level = apic_level_intr[irqno];
1902
1903 /*
1904 * Wait for the delivery status bit to be cleared. This should
1905 * be a very small amount of time.
1906 */
1907 repeats = 0;
1908 do {
1909 repeats++;
1910
1911 for (waited = 0; waited < apic_max_reps_clear_pending;
1912 waited++) {
1913 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0)
1914 break;
1915 }
1916 if (!level)
1917 break;
1918
1919 /*
1920 * Mask the RDT entry for level-triggered interrupts.
1921 */
1922 irqp->airq_rdt_entry |= AV_MASK;
1923 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1924 intin_no);
1925 if ((masked = (rdt_entry & AV_MASK)) == 0) {
1926 /* Mask it */
1927 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1928 AV_MASK | rdt_entry);
1929 }
1930
1931 /*
1932 * If there was a race and an interrupt was injected
1933 * just before we masked, check for that case here.
1934 * Then, unmask the RDT entry and try again. If we're
1935 * on our last try, don't unmask (because we want the
1936 * RDT entry to remain masked for the rest of the
1937 * function).
1938 */
1939 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1940 intin_no);
1941 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) &&
1942 (repeats < apic_max_reps_clear_pending)) {
1943 /* Unmask it */
1944 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1945 intin_no, rdt_entry & ~AV_MASK);
1946 irqp->airq_rdt_entry &= ~AV_MASK;
1947 }
1948 } while ((rdt_entry & AV_PENDING) &&
1949 (repeats < apic_max_reps_clear_pending));
1950
1951 #ifdef DEBUG
1952 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0)
1953 apix_intr_deliver_timeouts++;
1954 #endif
1955
1956 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method))
1957 goto done;
1958
1959 /*
1960 * wait for remote IRR to be cleared for level-triggered
1961 * interrupts
1962 */
1963 repeats = 0;
1964 do {
1965 repeats++;
1966
1967 for (waited = 0; waited < apic_max_reps_clear_pending;
1968 waited++) {
1969 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR)
1970 == 0)
1971 break;
1972 }
1973
1974 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1975 lock_clear(&apic_ioapic_lock);
1976 intr_restore(iflag);
1977
1978 delay(APIX_CHECK_IRR_DELAY);
1979
1980 iflag = intr_clear();
1981 lock_set(&apic_ioapic_lock);
1982 }
1983 } while (repeats < apix_max_reps_irr_pending);
1984
1985 if (repeats >= apix_max_reps_irr_pending) {
1986 #ifdef DEBUG
1987 apix_intr_rirr_timeouts++;
1988 #endif
1989
1990 /*
1991 * If we waited and the Remote IRR bit is still not cleared,
1992 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1993 * times for this interrupt, try the last-ditch workaround:
1994 */
1995 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1996 /*
1997 * Trying to clear the bit through normal
1998 * channels has failed. So as a last-ditch
1999 * effort, try to set the trigger mode to
2000 * edge, then to level. This has been
2001 * observed to work on many systems.
2002 */
2003 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2004 intin_no,
2005 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2006 intin_no) & ~AV_LEVEL);
2007 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2008 intin_no,
2009 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
2010 intin_no) | AV_LEVEL);
2011 }
2012
2013 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
2014 #ifdef DEBUG
2015 apix_intr_rirr_reset_failure++;
2016 #endif
2017 lock_clear(&apic_ioapic_lock);
2018 intr_restore(iflag);
2019 prom_printf("apix: Remote IRR still "
2020 "not clear for IOAPIC %d intin %d.\n"
2021 "\tInterrupts to this pin may cease "
2022 "functioning.\n", ioapic_ix, intin_no);
2023 return (1); /* return failure */
2024 }
2025 }
2026
2027 done:
2028 /* change apic_irq_table */
2029 lock_clear(&apic_ioapic_lock);
2030 intr_restore(iflag);
2031 apix_intx_set_vector(irqno, cpuid, vector);
2032 iflag = intr_clear();
2033 lock_set(&apic_ioapic_lock);
2034
2035 /* reprogramme IO-APIC RDT entry */
2036 apix_intx_enable(irqno);
2037
2038 lock_clear(&apic_ioapic_lock);
2039 intr_restore(iflag);
2040
2041 return (0);
2042 }
2043
2044 static int
2045 apix_intx_get_pending(int irqno)
2046 {
2047 apic_irq_t *irqp;
2048 int intin, ioapicindex, pending;
2049 ulong_t iflag;
2050
2051 mutex_enter(&airq_mutex);
2052 irqp = apic_irq_table[irqno];
2053 if (IS_IRQ_FREE(irqp)) {
2054 mutex_exit(&airq_mutex);
2055 return (0);
2056 }
2057
2058 /* check IO-APIC delivery status */
2059 intin = irqp->airq_intin_no;
2060 ioapicindex = irqp->airq_ioapicindex;
2061 mutex_exit(&airq_mutex);
2062
2063 iflag = intr_clear();
2064 lock_set(&apic_ioapic_lock);
2065
2066 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) &
2067 AV_PENDING) ? 1 : 0;
2068
2069 lock_clear(&apic_ioapic_lock);
2070 intr_restore(iflag);
2071
2072 return (pending);
2073 }
2074
2075 /*
2076 * This function will mask the interrupt on the I/O APIC
2077 */
2078 static void
2079 apix_intx_set_mask(int irqno)
2080 {
2081 int intin, ioapixindex, rdt_entry;
2082 ulong_t iflag;
2083 apic_irq_t *irqp;
2084
2085 mutex_enter(&airq_mutex);
2086 irqp = apic_irq_table[irqno];
2087
2088 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2089
2090 intin = irqp->airq_intin_no;
2091 ioapixindex = irqp->airq_ioapicindex;
2092 mutex_exit(&airq_mutex);
2093
2094 iflag = intr_clear();
2095 lock_set(&apic_ioapic_lock);
2096
2097 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2098
2099 /* clear mask */
2100 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2101 (AV_MASK | rdt_entry));
2102
2103 lock_clear(&apic_ioapic_lock);
2104 intr_restore(iflag);
2105 }
2106
2107 /*
2108 * This function will clear the mask for the interrupt on the I/O APIC
2109 */
2110 static void
2111 apix_intx_clear_mask(int irqno)
2112 {
2113 int intin, ioapixindex, rdt_entry;
2114 ulong_t iflag;
2115 apic_irq_t *irqp;
2116
2117 mutex_enter(&airq_mutex);
2118 irqp = apic_irq_table[irqno];
2119
2120 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2121
2122 intin = irqp->airq_intin_no;
2123 ioapixindex = irqp->airq_ioapicindex;
2124 mutex_exit(&airq_mutex);
2125
2126 iflag = intr_clear();
2127 lock_set(&apic_ioapic_lock);
2128
2129 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2130
2131 /* clear mask */
2132 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2133 ((~AV_MASK) & rdt_entry));
2134
2135 lock_clear(&apic_ioapic_lock);
2136 intr_restore(iflag);
2137 }
2138
2139 /*
2140 * For level-triggered interrupt, mask the IRQ line. Mask means
2141 * new interrupts will not be delivered. The interrupt already
2142 * accepted by a local APIC is not affected
2143 */
2144 void
2145 apix_level_intr_pre_eoi(int irq)
2146 {
2147 apic_irq_t *irqp = apic_irq_table[irq];
2148 int apic_ix, intin_ix;
2149
2150 if (irqp == NULL)
2151 return;
2152
2153 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL);
2154
2155 lock_set(&apic_ioapic_lock);
2156
2157 intin_ix = irqp->airq_intin_no;
2158 apic_ix = irqp->airq_ioapicindex;
2159
2160 if (irqp->airq_cpu != CPU->cpu_id) {
2161 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method))
2162 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2163 lock_clear(&apic_ioapic_lock);
2164 return;
2165 }
2166
2167 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) {
2168 /*
2169 * This is a IOxAPIC and there is EOI register:
2170 * Change the vector to reserved unused vector, so that
2171 * the EOI from Local APIC won't clear the Remote IRR for
2172 * this level trigger interrupt. Instead, we'll manually
2173 * clear it in apix_post_hardint() after ISR handling.
2174 */
2175 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2176 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR);
2177 } else {
2178 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2179 AV_MASK | irqp->airq_rdt_entry);
2180 }
2181
2182 lock_clear(&apic_ioapic_lock);
2183 }
2184
2185 /*
2186 * For level-triggered interrupt, unmask the IRQ line
2187 * or restore the original vector number.
2188 */
2189 void
2190 apix_level_intr_post_dispatch(int irq)
2191 {
2192 apic_irq_t *irqp = apic_irq_table[irq];
2193 int apic_ix, intin_ix;
2194
2195 if (irqp == NULL)
2196 return;
2197
2198 lock_set(&apic_ioapic_lock);
2199
2200 intin_ix = irqp->airq_intin_no;
2201 apic_ix = irqp->airq_ioapicindex;
2202
2203 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) {
2204 /*
2205 * Already sent EOI back to Local APIC.
2206 * Send EOI to IO-APIC
2207 */
2208 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2209 } else {
2210 /* clear the mask or restore the vector */
2211 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2212 irqp->airq_rdt_entry);
2213
2214 /* send EOI to IOxAPIC */
2215 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC)
2216 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2217 }
2218
2219 lock_clear(&apic_ioapic_lock);
2220 }
2221
2222 static int
2223 apix_intx_get_shared(int irqno)
2224 {
2225 apic_irq_t *irqp;
2226 int share;
2227
2228 mutex_enter(&airq_mutex);
2229 irqp = apic_irq_table[irqno];
2230 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
2231 mutex_exit(&airq_mutex);
2232 return (0);
2233 }
2234 share = irqp->airq_share;
2235 mutex_exit(&airq_mutex);
2236
2237 return (share);
2238 }
2239
2240 static void
2241 apix_intx_set_shared(int irqno, int delta)
2242 {
2243 apic_irq_t *irqp;
2244
2245 mutex_enter(&airq_mutex);
2246 irqp = apic_irq_table[irqno];
2247 if (IS_IRQ_FREE(irqp)) {
2248 mutex_exit(&airq_mutex);
2249 return;
2250 }
2251 irqp->airq_share += delta;
2252 mutex_exit(&airq_mutex);
2253 }
2254
2255 /*
2256 * Setup IRQ table. Return IRQ no or -1 on failure
2257 */
2258 static int
2259 apix_intx_setup(dev_info_t *dip, int inum, int irqno,
2260 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp)
2261 {
2262 int origirq = ispec->intrspec_vec;
2263 int newirq;
2264 short intr_index;
2265 uchar_t ipin, ioapic, ioapicindex;
2266 apic_irq_t *irqp;
2267
2268 UNREFERENCED_1PARAMETER(inum);
2269
2270 if (intrp != NULL) {
2271 intr_index = (short)(intrp - apic_io_intrp);
2272 ioapic = intrp->intr_destid;
2273 ipin = intrp->intr_destintin;
2274
2275 /* Find ioapicindex. If destid was ALL, we will exit with 0. */
2276 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
2277 if (apic_io_id[ioapicindex] == ioapic)
2278 break;
2279 ASSERT((ioapic == apic_io_id[ioapicindex]) ||
2280 (ioapic == INTR_ALL_APIC));
2281
2282 /* check whether this intin# has been used by another irqno */
2283 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1)
2284 return (newirq);
2285
2286 } else if (iflagp != NULL) { /* ACPI */
2287 intr_index = ACPI_INDEX;
2288 ioapicindex = acpi_find_ioapic(irqno);
2289 ASSERT(ioapicindex != 0xFF);
2290 ioapic = apic_io_id[ioapicindex];
2291 ipin = irqno - apic_io_vectbase[ioapicindex];
2292
2293 if (apic_irq_table[irqno] &&
2294 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
2295 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
2296 apic_irq_table[irqno]->airq_ioapicindex ==
2297 ioapicindex);
2298 return (irqno);
2299 }
2300
2301 } else { /* default configuration */
2302 intr_index = DEFAULT_INDEX;
2303 ioapicindex = 0;
2304 ioapic = apic_io_id[ioapicindex];
2305 ipin = (uchar_t)irqno;
2306 }
2307
2308 /* allocate a new IRQ no */
2309 if ((irqp = apic_irq_table[irqno]) == NULL) {
2310 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
2311 apic_irq_table[irqno] = irqp;
2312 } else {
2313 if (irqp->airq_mps_intr_index != FREE_INDEX) {
2314 newirq = apic_allocate_irq(apic_first_avail_irq);
2315 if (newirq == -1) {
2316 return (-1);
2317 }
2318 irqno = newirq;
2319 irqp = apic_irq_table[irqno];
2320 ASSERT(irqp != NULL);
2321 }
2322 }
2323 apic_max_device_irq = max(irqno, apic_max_device_irq);
2324 apic_min_device_irq = min(irqno, apic_min_device_irq);
2325
2326 irqp->airq_mps_intr_index = intr_index;
2327 irqp->airq_ioapicindex = ioapicindex;
2328 irqp->airq_intin_no = ipin;
2329 irqp->airq_dip = dip;
2330 irqp->airq_origirq = (uchar_t)origirq;
2331 if (iflagp != NULL)
2332 irqp->airq_iflag = *iflagp;
2333 irqp->airq_cpu = IRQ_UNINIT;
2334 irqp->airq_vector = 0;
2335
2336 return (irqno);
2337 }
2338
2339 /*
2340 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error
2341 */
2342 static int
2343 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype,
2344 struct intrspec *ispec)
2345 {
2346 int irqno = ispec->intrspec_vec;
2347 int newirq, i;
2348 iflag_t intr_flag;
2349 ACPI_SUBTABLE_HEADER *hp;
2350 ACPI_MADT_INTERRUPT_OVERRIDE *isop;
2351 struct apic_io_intr *intrp;
2352
2353 if (!apic_enable_acpi || apic_use_acpi_madt_only) {
2354 int busid;
2355
2356 if (bustype == 0)
2357 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
2358
2359 /* loop checking BUS_ISA/BUS_EISA */
2360 for (i = 0; i < 2; i++) {
2361 if (((busid = apic_find_bus_id(bustype)) != -1) &&
2362 ((intrp = apic_find_io_intr_w_busid(irqno, busid))
2363 != NULL)) {
2364 return (apix_intx_setup(dip, inum, irqno,
2365 intrp, ispec, NULL));
2366 }
2367 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
2368 }
2369
2370 /* fall back to default configuration */
2371 return (-1);
2372 }
2373
2374 /* search iso entries first */
2375 if (acpi_iso_cnt != 0) {
2376 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
2377 i = 0;
2378 while (i < acpi_iso_cnt) {
2379 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
2380 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
2381 if (isop->Bus == 0 &&
2382 isop->SourceIrq == irqno) {
2383 newirq = isop->GlobalIrq;
2384 intr_flag.intr_po = isop->IntiFlags &
2385 ACPI_MADT_POLARITY_MASK;
2386 intr_flag.intr_el = (isop->IntiFlags &
2387 ACPI_MADT_TRIGGER_MASK) >> 2;
2388 intr_flag.bustype = BUS_ISA;
2389
2390 return (apix_intx_setup(dip, inum,
2391 newirq, NULL, ispec, &intr_flag));
2392 }
2393 i++;
2394 }
2395 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
2396 hp->Length);
2397 }
2398 }
2399 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
2400 intr_flag.intr_el = INTR_EL_EDGE;
2401 intr_flag.bustype = BUS_ISA;
2402 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag));
2403 }
2404
2405
2406 /*
2407 * Setup IRQ table for pci devices. Return IRQ no or -1 on error
2408 */
2409 static int
2410 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype,
2411 struct intrspec *ispec)
2412 {
2413 int busid, devid, pci_irq;
2414 ddi_acc_handle_t cfg_handle;
2415 uchar_t ipin;
2416 iflag_t intr_flag;
2417 struct apic_io_intr *intrp;
2418
2419 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
2420 return (-1);
2421
2422 if (busid == 0 && apic_pci_bus_total == 1)
2423 busid = (int)apic_single_pci_busid;
2424
2425 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
2426 return (-1);
2427 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
2428 pci_config_teardown(&cfg_handle);
2429
2430 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */
2431 if (apic_acpi_translate_pci_irq(dip, busid, devid,
2432 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
2433 return (-1);
2434
2435 intr_flag.bustype = (uchar_t)bustype;
2436 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec,
2437 &intr_flag));
2438 }
2439
2440 /* MP configuration table */
2441 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
2442 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) {
2443 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp);
2444 if (pci_irq == -1)
2445 return (-1);
2446 }
2447
2448 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL));
2449 }
2450
2451 /*
2452 * Translate and return IRQ no
2453 */
2454 static int
2455 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec)
2456 {
2457 int newirq, irqno = ispec->intrspec_vec;
2458 int parent_is_pci_or_pciex = 0, child_is_pciex = 0;
2459 int bustype = 0, dev_len;
2460 char dev_type[16];
2461
2462 if (apic_defconf) {
2463 mutex_enter(&airq_mutex);
2464 goto defconf;
2465 }
2466
2467 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) {
2468 mutex_enter(&airq_mutex);
2469 goto nonpci;
2470 }
2471
2472 /*
2473 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string()
2474 * to avoid extra buffer allocation.
2475 */
2476 dev_len = sizeof (dev_type);
2477 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
2478 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
2479 &dev_len) == DDI_PROP_SUCCESS) {
2480 if ((strcmp(dev_type, "pci") == 0) ||
2481 (strcmp(dev_type, "pciex") == 0))
2482 parent_is_pci_or_pciex = 1;
2483 }
2484
2485 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
2486 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
2487 &dev_len) == DDI_PROP_SUCCESS) {
2488 if (strstr(dev_type, "pciex"))
2489 child_is_pciex = 1;
2490 }
2491
2492 mutex_enter(&airq_mutex);
2493
2494 if (parent_is_pci_or_pciex) {
2495 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
2496 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec);
2497 if (newirq != -1)
2498 goto done;
2499 bustype = 0;
2500 } else if (strcmp(dev_type, "isa") == 0)
2501 bustype = BUS_ISA;
2502 else if (strcmp(dev_type, "eisa") == 0)
2503 bustype = BUS_EISA;
2504
2505 nonpci:
2506 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec);
2507 if (newirq != -1)
2508 goto done;
2509
2510 defconf:
2511 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL);
2512 if (newirq == -1) {
2513 mutex_exit(&airq_mutex);
2514 return (-1);
2515 }
2516 done:
2517 ASSERT(apic_irq_table[newirq]);
2518 mutex_exit(&airq_mutex);
2519 return (newirq);
2520 }
2521
2522 static int
2523 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2524 {
2525 int irqno;
2526 apix_vector_t *vecp;
2527
2528 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2529 return (0);
2530
2531 if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL)
2532 return (0);
2533
2534 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s "
2535 "irqno=0x%x cpuid=%d vector=0x%x\n",
2536 (void *)dip, ddi_driver_name(dip), irqno,
2537 vecp->v_cpuid, vecp->v_vector));
2538
2539 return (1);
2540 }
2541
2542 /*
2543 * Return the vector number if the translated IRQ for this device
2544 * has a vector mapping setup. If no IRQ setup exists or no vector is
2545 * allocated to it then return 0.
2546 */
2547 static apix_vector_t *
2548 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2549 {
2550 int irqno;
2551 apix_vector_t *vecp;
2552
2553 /* get the IRQ number */
2554 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2555 return (NULL);
2556
2557 /* get the vector number if a vector is allocated to this irqno */
2558 vecp = apix_intx_get_vector(irqno);
2559
2560 return (vecp);
2561 }
2562
2563 /* stub function */
2564 int
2565 apix_loaded(void)
2566 {
2567 return (apix_is_enabled);
2568 }