1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2016 Nexenta Systems, Inc. 24 * Copyright (c) 2017 by Delphix. All rights reserved. 25 */ 26 /* 27 * Copyright (c) 2010, Intel Corporation. 28 * All rights reserved. 29 */ 30 31 /* 32 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 33 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 34 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 35 * PSMI 1.5 extensions are supported in Solaris Nevada. 36 * PSMI 1.6 extensions are supported in Solaris Nevada. 37 * PSMI 1.7 extensions are supported in Solaris Nevada. 38 */ 39 #define PSMI_1_7 40 41 #include <sys/processor.h> 42 #include <sys/time.h> 43 #include <sys/psm.h> 44 #include <sys/smp_impldefs.h> 45 #include <sys/cram.h> 46 #include <sys/acpi/acpi.h> 47 #include <sys/acpica.h> 48 #include <sys/psm_common.h> 49 #include <sys/apic.h> 50 #include <sys/apic_timer.h> 51 #include <sys/pit.h> 52 #include <sys/ddi.h> 53 #include <sys/sunddi.h> 54 #include <sys/ddi_impldefs.h> 55 #include <sys/pci.h> 56 #include <sys/promif.h> 57 #include <sys/x86_archext.h> 58 #include <sys/cpc_impl.h> 59 #include <sys/uadmin.h> 60 #include <sys/panic.h> 61 #include <sys/debug.h> 62 #include <sys/archsystm.h> 63 #include <sys/trap.h> 64 #include <sys/machsystm.h> 65 #include <sys/cpuvar.h> 66 #include <sys/rm_platter.h> 67 #include <sys/privregs.h> 68 #include <sys/cyclic.h> 69 #include <sys/note.h> 70 #include <sys/pci_intr_lib.h> 71 #include <sys/sunndi.h> 72 #if !defined(__xpv) 73 #include <sys/hpet.h> 74 #include <sys/clock.h> 75 #endif 76 77 /* 78 * Local Function Prototypes 79 */ 80 static int apic_handle_defconf(); 81 static int apic_parse_mpct(caddr_t mpct, int bypass); 82 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); 83 static int apic_checksum(caddr_t bptr, int len); 84 static int apic_find_bus_type(char *bus); 85 static int apic_find_bus(int busid); 86 static struct apic_io_intr *apic_find_io_intr(int irqno); 87 static int apic_find_free_irq(int start, int end); 88 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); 89 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); 90 static void apic_free_apic_cpus(void); 91 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr); 92 static int apic_acpi_enter_apicmode(void); 93 94 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, 95 int child_ipin, struct apic_io_intr **intrp); 96 int apic_find_bus_id(int bustype); 97 int apic_find_intin(uchar_t ioapic, uchar_t intin); 98 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); 99 100 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ 101 102 /* ACPI SCI interrupt configuration; -1 if SCI not used */ 103 int apic_sci_vect = -1; 104 iflag_t apic_sci_flags; 105 106 #if !defined(__xpv) 107 /* ACPI HPET interrupt configuration; -1 if HPET not used */ 108 int apic_hpet_vect = -1; 109 iflag_t apic_hpet_flags; 110 #endif 111 112 /* 113 * psm name pointer 114 */ 115 char *psm_name; 116 117 /* ACPI support routines */ 118 static int acpi_probe(char *); 119 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 120 int *pci_irqp, iflag_t *intr_flagp); 121 122 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 123 int ipin, int *pci_irqp, iflag_t *intr_flagp); 124 uchar_t acpi_find_ioapic(int irq); 125 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); 126 127 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */ 128 int apic_max_reps_clear_pending = 1000; 129 130 int apic_intr_policy = INTR_ROUND_ROBIN; 131 132 int apic_next_bind_cpu = 1; /* For round robin assignment */ 133 /* start with cpu 1 */ 134 135 /* 136 * If enabled, the distribution works as follows: 137 * On every interrupt entry, the current ipl for the CPU is set in cpu_info 138 * and the irq corresponding to the ipl is also set in the aci_current array. 139 * interrupt exit and setspl (due to soft interrupts) will cause the current 140 * ipl to be be changed. This is cache friendly as these frequently used 141 * paths write into a per cpu structure. 142 * 143 * Sampling is done by checking the structures for all CPUs and incrementing 144 * the busy field of the irq (if any) executing on each CPU and the busy field 145 * of the corresponding CPU. 146 * In periodic mode this is done on every clock interrupt. 147 * In one-shot mode, this is done thru a cyclic with an interval of 148 * apic_redistribute_sample_interval (default 10 milli sec). 149 * 150 * Every apic_sample_factor_redistribution times we sample, we do computations 151 * to decide which interrupt needs to be migrated (see comments 152 * before apic_intr_redistribute(). 153 */ 154 155 /* 156 * Following 3 variables start as % and can be patched or set using an 157 * API to be defined in future. They will be scaled to 158 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic 159 * mode), or 101 in one-shot mode to stagger it away from one sec processing 160 */ 161 162 int apic_int_busy_mark = 60; 163 int apic_int_free_mark = 20; 164 int apic_diff_for_redistribution = 10; 165 166 /* sampling interval for interrupt redistribution for dynamic migration */ 167 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ 168 169 /* 170 * number of times we sample before deciding to redistribute interrupts 171 * for dynamic migration 172 */ 173 int apic_sample_factor_redistribution = 101; 174 175 int apic_redist_cpu_skip = 0; 176 int apic_num_imbalance = 0; 177 int apic_num_rebind = 0; 178 179 /* 180 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic 181 * allocation of CPU ids is disabled. 182 */ 183 int apic_max_nproc = -1; 184 int apic_nproc = 0; 185 size_t apic_cpus_size = 0; 186 int apic_defconf = 0; 187 int apic_irq_translate = 0; 188 int apic_spec_rev = 0; 189 int apic_imcrp = 0; 190 191 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ 192 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ 193 194 /* 195 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource 196 * will be assigned (via _SRS). If it is not set, use the current 197 * irq setting (via _CRS), but only if that irq is in the set of possible 198 * irqs (returned by _PRS) for the device. 199 */ 200 int apic_unconditional_srs = 1; 201 202 /* 203 * For interrupt link devices, if apic_prefer_crs is set when we are 204 * assigning an IRQ resource to a device, prefer the current IRQ setting 205 * over other possible irq settings under same conditions. 206 */ 207 208 int apic_prefer_crs = 1; 209 210 uchar_t apic_io_id[MAX_IO_APIC]; 211 volatile uint32_t *apicioadr[MAX_IO_APIC]; 212 uchar_t apic_io_ver[MAX_IO_APIC]; 213 uchar_t apic_io_vectbase[MAX_IO_APIC]; 214 uchar_t apic_io_vectend[MAX_IO_APIC]; 215 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1]; 216 uint32_t apic_physaddr[MAX_IO_APIC]; 217 218 boolean_t ioapic_mask_workaround[MAX_IO_APIC]; 219 220 /* 221 * First available slot to be used as IRQ index into the apic_irq_table 222 * for those interrupts (like MSI/X) that don't have a physical IRQ. 223 */ 224 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ; 225 226 /* 227 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound 228 * and bound elements of cpus_info and the temp_cpu element of irq_struct 229 */ 230 lock_t apic_ioapic_lock; 231 232 int apic_io_max = 0; /* no. of i/o apics enabled */ 233 234 struct apic_io_intr *apic_io_intrp = NULL; 235 static struct apic_bus *apic_busp; 236 237 uchar_t apic_resv_vector[MAXIPL+1]; 238 239 char apic_level_intr[APIC_MAX_VECTOR+1]; 240 241 uint32_t eisa_level_intr_mask = 0; 242 /* At least MSB will be set if EISA bus */ 243 244 int apic_pci_bus_total = 0; 245 uchar_t apic_single_pci_busid = 0; 246 247 /* 248 * airq_mutex protects additions to the apic_irq_table - the first 249 * pointer and any airq_nexts off of that one. It also protects 250 * apic_max_device_irq & apic_min_device_irq. It also guarantees 251 * that share_id is unique as new ids are generated only when new 252 * irq_t structs are linked in. Once linked in the structs are never 253 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed 254 * or allocated. Note that there is a slight gap between allocating in 255 * apic_introp_xlate and programming in addspl. 256 */ 257 kmutex_t airq_mutex; 258 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; 259 int apic_max_device_irq = 0; 260 int apic_min_device_irq = APIC_MAX_VECTOR; 261 262 typedef struct prs_irq_list_ent { 263 int list_prio; 264 int32_t irq; 265 iflag_t intrflags; 266 acpi_prs_private_t prsprv; 267 struct prs_irq_list_ent *next; 268 } prs_irq_list_t; 269 270 271 /* 272 * ACPI variables 273 */ 274 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ 275 int apic_enable_acpi = 0; 276 277 /* ACPI Multiple APIC Description Table ptr */ 278 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 279 280 /* ACPI Interrupt Source Override Structure ptr */ 281 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; 282 int acpi_iso_cnt = 0; 283 284 /* ACPI Non-maskable Interrupt Sources ptr */ 285 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL; 286 static int acpi_nmi_scnt = 0; 287 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; 288 static int acpi_nmi_ccnt = 0; 289 290 static boolean_t acpi_found_smp_config = B_FALSE; 291 292 /* 293 * The following added to identify a software poweroff method if available. 294 */ 295 296 static struct { 297 int poweroff_method; 298 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ 299 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ 300 } apic_mps_ids[] = { 301 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ 302 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ 303 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ 304 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ 305 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ 306 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ 307 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ 308 }; 309 310 int apic_poweroff_method = APIC_POWEROFF_NONE; 311 312 /* 313 * Auto-configuration routines 314 */ 315 316 /* 317 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here 318 * May work with 1.1 - but not guaranteed. 319 * According to the MP Spec, the MP floating pointer structure 320 * will be searched in the order described below: 321 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) 322 * 2. Within the last kilobyte of system base memory 323 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh 324 * Once we find the right signature with proper checksum, we call 325 * either handle_defconf or parse_mpct to get all info necessary for 326 * subsequent operations. 327 */ 328 int 329 apic_probe_common(char *modname) 330 { 331 uint32_t mpct_addr, ebda_start = 0, base_mem_end; 332 caddr_t biosdatap; 333 caddr_t mpct = 0; 334 caddr_t fptr; 335 int i, mpct_size, mapsize, retval = PSM_FAILURE; 336 ushort_t ebda_seg, base_mem_size; 337 struct apic_mpfps_hdr *fpsp; 338 struct apic_mp_cnf_hdr *hdrp; 339 int bypass_cpu_and_ioapics_in_mptables; 340 int acpi_user_options; 341 342 if (apic_forceload < 0) 343 return (retval); 344 345 /* 346 * Remember who we are 347 */ 348 psm_name = modname; 349 350 /* Allow override for MADT-only mode */ 351 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, 352 "acpi-user-options", 0); 353 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); 354 355 /* Allow apic_use_acpi to override MADT-only mode */ 356 if (!apic_use_acpi) 357 apic_use_acpi_madt_only = 0; 358 359 retval = acpi_probe(modname); 360 361 /* in UEFI system, there is no BIOS data */ 362 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 363 goto apic_ret; 364 365 /* 366 * mapin the bios data area 40:0 367 * 40:13h - two-byte location reports the base memory size 368 * 40:0Eh - two-byte location for the exact starting address of 369 * the EBDA segment for EISA 370 */ 371 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); 372 if (!biosdatap) 373 goto apic_ret; 374 fpsp = (struct apic_mpfps_hdr *)NULL; 375 mapsize = MPFPS_RAM_WIN_LEN; 376 /*LINTED: pointer cast may result in improper alignment */ 377 ebda_seg = *((ushort_t *)(biosdatap+0xe)); 378 /* check the 1k of EBDA */ 379 if (ebda_seg) { 380 ebda_start = ((uint32_t)ebda_seg) << 4; 381 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); 382 if (fptr) { 383 if (!(fpsp = 384 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) 385 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 386 } 387 } 388 /* If not in EBDA, check the last k of system base memory */ 389 if (!fpsp) { 390 /*LINTED: pointer cast may result in improper alignment */ 391 base_mem_size = *((ushort_t *)(biosdatap + 0x13)); 392 393 if (base_mem_size > 512) 394 base_mem_end = 639 * 1024; 395 else 396 base_mem_end = 511 * 1024; 397 /* if ebda == last k of base mem, skip to check BIOS ROM */ 398 if (base_mem_end != ebda_start) { 399 400 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, 401 PROT_READ); 402 403 if (fptr) { 404 if (!(fpsp = apic_find_fps_sig(fptr, 405 MPFPS_RAM_WIN_LEN))) 406 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); 407 } 408 } 409 } 410 psm_unmap_phys(biosdatap, 0x20); 411 412 /* If still cannot find it, check the BIOS ROM space */ 413 if (!fpsp) { 414 mapsize = MPFPS_ROM_WIN_LEN; 415 fptr = psm_map_phys(MPFPS_ROM_WIN_START, 416 MPFPS_ROM_WIN_LEN, PROT_READ); 417 if (fptr) { 418 if (!(fpsp = 419 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { 420 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 421 goto apic_ret; 422 } 423 } 424 } 425 426 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { 427 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 428 goto apic_ret; 429 } 430 431 apic_spec_rev = fpsp->mpfps_spec_rev; 432 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { 433 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); 434 goto apic_ret; 435 } 436 437 /* check IMCR is present or not */ 438 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; 439 440 /* check default configuration (dual CPUs) */ 441 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { 442 psm_unmap_phys(fptr, mapsize); 443 if ((retval = apic_handle_defconf()) != PSM_SUCCESS) 444 return (retval); 445 446 goto apic_ret; 447 } 448 449 /* MP Configuration Table */ 450 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); 451 452 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ 453 454 /* 455 * Map in enough memory for the MP Configuration Table Header. 456 * Use this table to read the total length of the BIOS data and 457 * map in all the info 458 */ 459 /*LINTED: pointer cast may result in improper alignment */ 460 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, 461 sizeof (struct apic_mp_cnf_hdr), PROT_READ); 462 if (!hdrp) 463 goto apic_ret; 464 465 /* check mp configuration table signature PCMP */ 466 if (hdrp->mpcnf_sig != 0x504d4350) { 467 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 468 goto apic_ret; 469 } 470 mpct_size = (int)hdrp->mpcnf_tbl_length; 471 472 apic_set_pwroff_method_from_mpcnfhdr(hdrp); 473 474 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); 475 476 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { 477 /* This is an ACPI machine No need for further checks */ 478 goto apic_ret; 479 } 480 481 /* 482 * Map in the entries for this machine, ie. Processor 483 * Entry Tables, Bus Entry Tables, etc. 484 * They are in fixed order following one another 485 */ 486 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); 487 if (!mpct) 488 goto apic_ret; 489 490 if (apic_checksum(mpct, mpct_size) != 0) 491 goto apic_fail1; 492 493 /*LINTED: pointer cast may result in improper alignment */ 494 hdrp = (struct apic_mp_cnf_hdr *)mpct; 495 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic, 496 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 497 if (!apicadr) 498 goto apic_fail1; 499 500 /* Parse all information in the tables */ 501 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); 502 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == 503 PSM_SUCCESS) { 504 retval = PSM_SUCCESS; 505 goto apic_ret; 506 } 507 508 apic_fail1: 509 psm_unmap_phys(mpct, mpct_size); 510 mpct = NULL; 511 512 apic_ret: 513 if (retval == PSM_SUCCESS) { 514 extern int apic_ioapic_method_probe(); 515 516 if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS) 517 return (PSM_SUCCESS); 518 } 519 520 for (i = 0; i < apic_io_max; i++) 521 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 522 if (apic_cpus) { 523 kmem_free(apic_cpus, apic_cpus_size); 524 apic_cpus = NULL; 525 } 526 if (apicadr) { 527 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 528 apicadr = NULL; 529 } 530 if (mpct) 531 psm_unmap_phys(mpct, mpct_size); 532 533 return (retval); 534 } 535 536 static void 537 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) 538 { 539 int i; 540 541 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); 542 i++) { 543 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, 544 strlen(apic_mps_ids[i].oem_id)) == 0) && 545 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, 546 strlen(apic_mps_ids[i].prod_id)) == 0)) { 547 548 apic_poweroff_method = apic_mps_ids[i].poweroff_method; 549 break; 550 } 551 } 552 553 if (apic_debug_mps_id != 0) { 554 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'" 555 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", 556 psm_name, 557 hdrp->mpcnf_oem_str[0], 558 hdrp->mpcnf_oem_str[1], 559 hdrp->mpcnf_oem_str[2], 560 hdrp->mpcnf_oem_str[3], 561 hdrp->mpcnf_oem_str[4], 562 hdrp->mpcnf_oem_str[5], 563 hdrp->mpcnf_oem_str[6], 564 hdrp->mpcnf_oem_str[7], 565 hdrp->mpcnf_prod_str[0], 566 hdrp->mpcnf_prod_str[1], 567 hdrp->mpcnf_prod_str[2], 568 hdrp->mpcnf_prod_str[3], 569 hdrp->mpcnf_prod_str[4], 570 hdrp->mpcnf_prod_str[5], 571 hdrp->mpcnf_prod_str[6], 572 hdrp->mpcnf_prod_str[7], 573 hdrp->mpcnf_prod_str[8], 574 hdrp->mpcnf_prod_str[9], 575 hdrp->mpcnf_prod_str[10], 576 hdrp->mpcnf_prod_str[11]); 577 } 578 } 579 580 static void 581 apic_free_apic_cpus(void) 582 { 583 if (apic_cpus != NULL) { 584 kmem_free(apic_cpus, apic_cpus_size); 585 apic_cpus = NULL; 586 apic_cpus_size = 0; 587 } 588 } 589 590 static int 591 acpi_probe(char *modname) 592 { 593 int i, intmax, index; 594 uint32_t id, ver; 595 int acpi_verboseflags = 0; 596 int madt_seen, madt_size; 597 ACPI_SUBTABLE_HEADER *ap; 598 ACPI_MADT_LOCAL_APIC *mpa; 599 ACPI_MADT_LOCAL_X2APIC *mpx2a; 600 ACPI_MADT_IO_APIC *mia; 601 ACPI_MADT_IO_SAPIC *misa; 602 ACPI_MADT_INTERRUPT_OVERRIDE *mio; 603 ACPI_MADT_NMI_SOURCE *mns; 604 ACPI_MADT_INTERRUPT_SOURCE *mis; 605 ACPI_MADT_LOCAL_APIC_NMI *mlan; 606 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan; 607 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao; 608 int sci; 609 iflag_t sci_flags; 610 volatile uint32_t *ioapic; 611 int ioapic_ix; 612 uint32_t *local_ids; 613 uint32_t *proc_ids; 614 uchar_t hid; 615 int warned = 0; 616 617 if (!apic_use_acpi) 618 return (PSM_FAILURE); 619 620 if (AcpiGetTable(ACPI_SIG_MADT, 1, 621 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) { 622 cmn_err(CE_WARN, "!acpi_probe: No MADT found!"); 623 return (PSM_FAILURE); 624 } 625 626 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address, 627 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); 628 if (!apicadr) 629 return (PSM_FAILURE); 630 631 if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 632 KM_NOSLEEP)) == NULL) 633 return (PSM_FAILURE); 634 635 if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t), 636 KM_NOSLEEP)) == NULL) { 637 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 638 return (PSM_FAILURE); 639 } 640 641 id = apic_reg_ops->apic_read(APIC_LID_REG); 642 local_ids[0] = (uchar_t)(id >> 24); 643 apic_nproc = index = 1; 644 apic_io_max = 0; 645 646 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 647 madt_size = acpi_mapic_dtp->Header.Length; 648 madt_seen = sizeof (*acpi_mapic_dtp); 649 650 while (madt_seen < madt_size) { 651 switch (ap->Type) { 652 case ACPI_MADT_TYPE_LOCAL_APIC: 653 mpa = (ACPI_MADT_LOCAL_APIC *) ap; 654 if (mpa->LapicFlags & ACPI_MADT_ENABLED) { 655 if (mpa->Id == 255) { 656 cmn_err(CE_WARN, "!%s: encountered " 657 "invalid entry in MADT: CPU %d " 658 "has Local APIC Id equal to 255 ", 659 psm_name, mpa->ProcessorId); 660 } 661 if (mpa->Id == local_ids[0]) { 662 ASSERT(index == 1); 663 proc_ids[0] = mpa->ProcessorId; 664 } else if (apic_nproc < NCPU && use_mp && 665 apic_nproc < boot_ncpus) { 666 local_ids[index] = mpa->Id; 667 proc_ids[index] = mpa->ProcessorId; 668 index++; 669 apic_nproc++; 670 } else if (apic_nproc == NCPU && !warned) { 671 cmn_err(CE_WARN, "%s: CPU limit " 672 "exceeded" 673 #if !defined(__amd64) 674 " for 32-bit mode" 675 #endif 676 "; Solaris will use %d CPUs.", 677 psm_name, NCPU); 678 warned = 1; 679 } 680 } 681 break; 682 683 case ACPI_MADT_TYPE_IO_APIC: 684 mia = (ACPI_MADT_IO_APIC *) ap; 685 if (apic_io_max < MAX_IO_APIC) { 686 ioapic_ix = apic_io_max; 687 apic_io_id[apic_io_max] = mia->Id; 688 apic_io_vectbase[apic_io_max] = 689 mia->GlobalIrqBase; 690 apic_physaddr[apic_io_max] = 691 (uint32_t)mia->Address; 692 ioapic = apicioadr[apic_io_max] = 693 mapin_ioapic((uint32_t)mia->Address, 694 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 695 if (!ioapic) 696 goto cleanup; 697 ioapic_mask_workaround[apic_io_max] = 698 apic_is_ioapic_AMD_813x(mia->Address); 699 apic_io_max++; 700 } 701 break; 702 703 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: 704 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap; 705 if (acpi_isop == NULL) 706 acpi_isop = mio; 707 acpi_iso_cnt++; 708 break; 709 710 case ACPI_MADT_TYPE_NMI_SOURCE: 711 /* UNIMPLEMENTED */ 712 mns = (ACPI_MADT_NMI_SOURCE *) ap; 713 if (acpi_nmi_sp == NULL) 714 acpi_nmi_sp = mns; 715 acpi_nmi_scnt++; 716 717 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n", 718 mns->GlobalIrq, mns->IntiFlags); 719 break; 720 721 case ACPI_MADT_TYPE_LOCAL_APIC_NMI: 722 /* UNIMPLEMENTED */ 723 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap; 724 if (acpi_nmi_cp == NULL) 725 acpi_nmi_cp = mlan; 726 acpi_nmi_ccnt++; 727 728 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n", 729 mlan->ProcessorId, mlan->IntiFlags, 730 mlan->Lint); 731 break; 732 733 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: 734 /* UNIMPLEMENTED */ 735 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap; 736 cmn_err(CE_NOTE, "!apic: address override: %lx\n", 737 (long)mao->Address); 738 break; 739 740 case ACPI_MADT_TYPE_IO_SAPIC: 741 /* UNIMPLEMENTED */ 742 misa = (ACPI_MADT_IO_SAPIC *) ap; 743 744 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", 745 misa->Id, misa->GlobalIrqBase, 746 (long)misa->Address); 747 break; 748 749 case ACPI_MADT_TYPE_INTERRUPT_SOURCE: 750 /* UNIMPLEMENTED */ 751 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap; 752 753 cmn_err(CE_NOTE, 754 "!apic: irq source: %d %d %d 0x%x %d %d\n", 755 mis->Id, mis->Eid, mis->GlobalIrq, 756 mis->IntiFlags, mis->Type, 757 mis->IoSapicVector); 758 break; 759 760 case ACPI_MADT_TYPE_LOCAL_X2APIC: 761 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap; 762 763 /* 764 * All logical processors with APIC ID values 765 * of 255 and greater will have their APIC 766 * reported through Processor X2APIC structure. 767 * All logical processors with APIC ID less than 768 * 255 will have their APIC reported through 769 * Processor Local APIC. 770 * 771 * Some systems apparently don't care and report all 772 * processors through Processor X2APIC structures. We 773 * warn about that but don't ignore those CPUs. 774 */ 775 if (mpx2a->LocalApicId < 255) { 776 cmn_err(CE_WARN, "!%s: ignoring invalid entry " 777 "in MADT: CPU %d has X2APIC Id %d (< 255)", 778 psm_name, mpx2a->Uid, mpx2a->LocalApicId); 779 } 780 if (mpx2a->LapicFlags & ACPI_MADT_ENABLED) { 781 if (mpx2a->LocalApicId == local_ids[0]) { 782 ASSERT(index == 1); 783 proc_ids[0] = mpx2a->Uid; 784 } else if (apic_nproc < NCPU && use_mp && 785 apic_nproc < boot_ncpus) { 786 local_ids[index] = mpx2a->LocalApicId; 787 proc_ids[index] = mpx2a->Uid; 788 index++; 789 apic_nproc++; 790 } else if (apic_nproc == NCPU && !warned) { 791 cmn_err(CE_WARN, "%s: CPU limit " 792 "exceeded" 793 #if !defined(__amd64) 794 " for 32-bit mode" 795 #endif 796 "; Solaris will use %d CPUs.", 797 psm_name, NCPU); 798 warned = 1; 799 } 800 } 801 802 break; 803 804 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: 805 /* UNIMPLEMENTED */ 806 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap; 807 if (mx2alan->Uid >> 8) 808 acpi_nmi_ccnt++; 809 810 #ifdef DEBUG 811 cmn_err(CE_NOTE, 812 "!apic: local x2apic nmi: %d 0x%x %d\n", 813 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint); 814 #endif 815 816 break; 817 818 case ACPI_MADT_TYPE_RESERVED: 819 default: 820 break; 821 } 822 823 /* advance to next entry */ 824 madt_seen += ap->Length; 825 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 826 } 827 828 /* We found multiple enabled cpus via MADT */ 829 if ((apic_nproc > 1) && (apic_io_max > 0)) { 830 acpi_found_smp_config = B_TRUE; 831 cmn_err(CE_NOTE, 832 "!apic: Using ACPI (MADT) for SMP configuration"); 833 } 834 835 /* 836 * allocate enough space for possible hot-adding of CPUs. 837 * max_ncpus may be less than apic_nproc if it's set by user. 838 */ 839 if (plat_dr_support_cpu()) { 840 apic_max_nproc = max_ncpus; 841 } 842 apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus); 843 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL) 844 goto cleanup; 845 846 /* 847 * ACPI doesn't provide the local apic ver, get it directly from the 848 * local apic 849 */ 850 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 851 for (i = 0; i < apic_nproc; i++) { 852 apic_cpus[i].aci_local_id = local_ids[i]; 853 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); 854 apic_cpus[i].aci_processor_id = proc_ids[i]; 855 /* Only build mapping info for CPUs present at boot. */ 856 if (i < boot_ncpus) 857 (void) acpica_map_cpu(i, proc_ids[i]); 858 } 859 860 /* 861 * To support CPU dynamic reconfiguration, the apic CPU info structure 862 * for each possible CPU will be pre-allocated at boot time. 863 * The state for each apic CPU info structure will be assigned according 864 * to the following rules: 865 * Rule 1: 866 * Slot index range: [0, min(apic_nproc, boot_ncpus)) 867 * State flags: 0 868 * Note: cpu exists and will be configured/enabled at boot time 869 * Rule 2: 870 * Slot index range: [boot_ncpus, apic_nproc) 871 * State flags: APIC_CPU_FREE | APIC_CPU_DIRTY 872 * Note: cpu exists but won't be configured/enabled at boot time 873 * Rule 3: 874 * Slot index range: [apic_nproc, boot_ncpus) 875 * State flags: APIC_CPU_FREE 876 * Note: cpu doesn't exist at boot time 877 * Rule 4: 878 * Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus) 879 * State flags: APIC_CPU_FREE 880 * Note: cpu doesn't exist at boot time 881 */ 882 CPUSET_ZERO(apic_cpumask); 883 for (i = 0; i < min(boot_ncpus, apic_nproc); i++) { 884 CPUSET_ADD(apic_cpumask, i); 885 apic_cpus[i].aci_status = 0; 886 } 887 for (i = boot_ncpus; i < apic_nproc; i++) { 888 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; 889 } 890 for (i = apic_nproc; i < boot_ncpus; i++) { 891 apic_cpus[i].aci_status = APIC_CPU_FREE; 892 } 893 for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) { 894 apic_cpus[i].aci_status = APIC_CPU_FREE; 895 } 896 897 for (i = 0; i < apic_io_max; i++) { 898 ioapic_ix = i; 899 900 /* 901 * need to check Sitka on the following acpi problem 902 * On the Sitka, the ioapic's apic_id field isn't reporting 903 * the actual io apic id. We have reported this problem 904 * to Intel. Until they fix the problem, we will get the 905 * actual id directly from the ioapic. 906 */ 907 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 908 hid = (uchar_t)(id >> 24); 909 910 if (hid != apic_io_id[i]) { 911 if (apic_io_id[i] == 0) 912 apic_io_id[i] = hid; 913 else { /* set ioapic id to whatever reported by ACPI */ 914 id = ((uint32_t)apic_io_id[i]) << 24; 915 ioapic_write(ioapic_ix, APIC_ID_CMD, id); 916 } 917 } 918 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD); 919 apic_io_ver[i] = (uchar_t)(ver & 0xff); 920 intmax = (ver >> 16) & 0xff; 921 apic_io_vectend[i] = apic_io_vectbase[i] + intmax; 922 if (apic_first_avail_irq <= apic_io_vectend[i]) 923 apic_first_avail_irq = apic_io_vectend[i] + 1; 924 } 925 926 927 /* 928 * Process SCI configuration here 929 * An error may be returned here if 930 * acpi-user-options specifies legacy mode 931 * (no SCI, no ACPI mode) 932 */ 933 if (acpica_get_sci(&sci, &sci_flags) != AE_OK) 934 sci = -1; 935 936 /* 937 * Now call acpi_init() to generate namespaces 938 * If this fails, we don't attempt to use ACPI 939 * even if we were able to get a MADT above 940 */ 941 if (acpica_init() != AE_OK) { 942 cmn_err(CE_WARN, "!apic: Failed to initialize acpica!"); 943 goto cleanup; 944 } 945 946 /* 947 * Call acpica_build_processor_map() now that we have 948 * ACPI namesspace access 949 */ 950 (void) acpica_build_processor_map(); 951 952 /* 953 * Squirrel away the SCI and flags for later on 954 * in apic_picinit() when we're ready 955 */ 956 apic_sci_vect = sci; 957 apic_sci_flags = sci_flags; 958 959 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) 960 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; 961 962 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) 963 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; 964 965 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) 966 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; 967 968 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE) 969 goto cleanup; 970 971 /* Enable ACPI APIC interrupt routing */ 972 if (apic_acpi_enter_apicmode() != PSM_FAILURE) { 973 cmn_err(CE_NOTE, "!apic: Using APIC interrupt routing mode"); 974 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); 975 apic_enable_acpi = 1; 976 if (apic_sci_vect > 0) { 977 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT); 978 } 979 if (apic_use_acpi_madt_only) { 980 cmn_err(CE_CONT, 981 "?Using ACPI for CPU/IOAPIC information ONLY\n"); 982 } 983 984 #if !defined(__xpv) 985 /* 986 * probe ACPI for hpet information here which is used later 987 * in apic_picinit(). 988 */ 989 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) { 990 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n"); 991 } 992 #endif 993 994 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 995 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 996 return (PSM_SUCCESS); 997 } 998 /* if setting APIC mode failed above, we fall through to cleanup */ 999 1000 cleanup: 1001 cmn_err(CE_WARN, "!apic: Failed acpi_probe, SMP config was %s", 1002 acpi_found_smp_config ? "found" : "not found"); 1003 apic_free_apic_cpus(); 1004 if (apicadr != NULL) { 1005 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1006 apicadr = NULL; 1007 } 1008 apic_max_nproc = -1; 1009 apic_nproc = 0; 1010 for (i = 0; i < apic_io_max; i++) { 1011 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN); 1012 apicioadr[i] = NULL; 1013 } 1014 apic_io_max = 0; 1015 acpi_isop = NULL; 1016 acpi_iso_cnt = 0; 1017 acpi_nmi_sp = NULL; 1018 acpi_nmi_scnt = 0; 1019 acpi_nmi_cp = NULL; 1020 acpi_nmi_ccnt = 0; 1021 acpi_found_smp_config = B_FALSE; 1022 kmem_free(local_ids, NCPU * sizeof (uint32_t)); 1023 kmem_free(proc_ids, NCPU * sizeof (uint32_t)); 1024 return (PSM_FAILURE); 1025 } 1026 1027 /* 1028 * Handle default configuration. Fill in reqd global variables & tables 1029 * Fill all details as MP table does not give any more info 1030 */ 1031 static int 1032 apic_handle_defconf() 1033 { 1034 uint_t lid; 1035 1036 /* Failed to probe ACPI MADT tables, disable CPU DR. */ 1037 apic_max_nproc = -1; 1038 apic_free_apic_cpus(); 1039 plat_dr_disable_cpu(); 1040 1041 apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR, 1042 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1043 apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR, 1044 APIC_LOCAL_MEMLEN, PROT_READ); 1045 apic_cpus_size = 2 * sizeof (*apic_cpus); 1046 apic_cpus = (apic_cpus_info_t *) 1047 kmem_zalloc(apic_cpus_size, KM_NOSLEEP); 1048 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) 1049 goto apic_handle_defconf_fail; 1050 CPUSET_ONLY(apic_cpumask, 0); 1051 CPUSET_ADD(apic_cpumask, 1); 1052 apic_nproc = 2; 1053 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1054 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); 1055 /* 1056 * According to the PC+MP spec 1.1, the local ids 1057 * for the default configuration has to be 0 or 1 1058 */ 1059 if (apic_cpus[0].aci_local_id == 1) 1060 apic_cpus[1].aci_local_id = 0; 1061 else if (apic_cpus[0].aci_local_id == 0) 1062 apic_cpus[1].aci_local_id = 1; 1063 else 1064 goto apic_handle_defconf_fail; 1065 1066 apic_io_id[0] = 2; 1067 apic_io_max = 1; 1068 if (apic_defconf >= 5) { 1069 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; 1070 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; 1071 apic_io_ver[0] = APIC_INTEGRATED_VERS; 1072 } else { 1073 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ 1074 apic_cpus[1].aci_local_ver = 0; 1075 apic_io_ver[0] = 0; 1076 } 1077 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) 1078 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1079 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1080 return (PSM_SUCCESS); 1081 1082 apic_handle_defconf_fail: 1083 if (apicadr) 1084 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN); 1085 if (apicioadr[0]) 1086 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN); 1087 return (PSM_FAILURE); 1088 } 1089 1090 /* Parse the entries in MP configuration table and collect info that we need */ 1091 static int 1092 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) 1093 { 1094 struct apic_procent *procp; 1095 struct apic_bus *busp; 1096 struct apic_io_entry *ioapicp; 1097 struct apic_io_intr *intrp; 1098 int ioapic_ix; 1099 uint_t lid; 1100 uint32_t id; 1101 uchar_t hid; 1102 int warned = 0; 1103 1104 /*LINTED: pointer cast may result in improper alignment */ 1105 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1106 1107 /* No need to count cpu entries if we won't use them */ 1108 if (!bypass_cpus_and_ioapics) { 1109 1110 /* Find max # of CPUS and allocate structure accordingly */ 1111 apic_nproc = 0; 1112 CPUSET_ZERO(apic_cpumask); 1113 while (procp->proc_entry == APIC_CPU_ENTRY) { 1114 if (procp->proc_cpuflags & CPUFLAGS_EN) { 1115 if (apic_nproc < NCPU && use_mp && 1116 apic_nproc < boot_ncpus) { 1117 CPUSET_ADD(apic_cpumask, apic_nproc); 1118 apic_nproc++; 1119 } else if (apic_nproc == NCPU && !warned) { 1120 cmn_err(CE_WARN, "%s: CPU limit " 1121 "exceeded" 1122 #if !defined(__amd64) 1123 " for 32-bit mode" 1124 #endif 1125 "; Solaris will use %d CPUs.", 1126 psm_name, NCPU); 1127 warned = 1; 1128 } 1129 1130 } 1131 procp++; 1132 } 1133 apic_cpus_size = apic_nproc * sizeof (*apic_cpus); 1134 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) 1135 kmem_zalloc(apic_cpus_size, KM_NOSLEEP))) 1136 return (PSM_FAILURE); 1137 } 1138 1139 /*LINTED: pointer cast may result in improper alignment */ 1140 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); 1141 1142 /* 1143 * start with index 1 as 0 needs to be filled in with Boot CPU, but 1144 * if we're bypassing this information, it has already been filled 1145 * in by acpi_probe(), so don't overwrite it. 1146 */ 1147 if (!bypass_cpus_and_ioapics) 1148 apic_nproc = 1; 1149 1150 while (procp->proc_entry == APIC_CPU_ENTRY) { 1151 /* check whether the cpu exists or not */ 1152 if (!bypass_cpus_and_ioapics && 1153 procp->proc_cpuflags & CPUFLAGS_EN) { 1154 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ 1155 lid = apic_reg_ops->apic_read(APIC_LID_REG); 1156 apic_cpus[0].aci_local_id = procp->proc_apicid; 1157 if (apic_cpus[0].aci_local_id != 1158 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { 1159 return (PSM_FAILURE); 1160 } 1161 apic_cpus[0].aci_local_ver = 1162 procp->proc_version; 1163 } else if (apic_nproc < NCPU && use_mp && 1164 apic_nproc < boot_ncpus) { 1165 apic_cpus[apic_nproc].aci_local_id = 1166 procp->proc_apicid; 1167 1168 apic_cpus[apic_nproc].aci_local_ver = 1169 procp->proc_version; 1170 apic_nproc++; 1171 1172 } 1173 } 1174 procp++; 1175 } 1176 1177 /* 1178 * Save start of bus entries for later use. 1179 * Get EISA level cntrl if EISA bus is present. 1180 * Also get the CPI bus id for single CPI bus case 1181 */ 1182 apic_busp = busp = (struct apic_bus *)procp; 1183 while (busp->bus_entry == APIC_BUS_ENTRY) { 1184 lid = apic_find_bus_type((char *)&busp->bus_str1); 1185 if (lid == BUS_EISA) { 1186 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | 1187 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); 1188 } else if (lid == BUS_PCI) { 1189 /* 1190 * apic_single_pci_busid will be used only if 1191 * apic_pic_bus_total is equal to 1 1192 */ 1193 apic_pci_bus_total++; 1194 apic_single_pci_busid = busp->bus_id; 1195 } 1196 busp++; 1197 } 1198 1199 ioapicp = (struct apic_io_entry *)busp; 1200 1201 if (!bypass_cpus_and_ioapics) 1202 apic_io_max = 0; 1203 do { 1204 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { 1205 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { 1206 apic_io_id[apic_io_max] = ioapicp->io_apicid; 1207 apic_io_ver[apic_io_max] = ioapicp->io_version; 1208 apicioadr[apic_io_max] = 1209 (void *)mapin_ioapic( 1210 (uint32_t)ioapicp->io_apic_addr, 1211 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); 1212 1213 if (!apicioadr[apic_io_max]) 1214 return (PSM_FAILURE); 1215 1216 ioapic_mask_workaround[apic_io_max] = 1217 apic_is_ioapic_AMD_813x( 1218 ioapicp->io_apic_addr); 1219 1220 ioapic_ix = apic_io_max; 1221 id = ioapic_read(ioapic_ix, APIC_ID_CMD); 1222 hid = (uchar_t)(id >> 24); 1223 1224 if (hid != apic_io_id[apic_io_max]) { 1225 if (apic_io_id[apic_io_max] == 0) 1226 apic_io_id[apic_io_max] = hid; 1227 else { 1228 /* 1229 * set ioapic id to whatever 1230 * reported by MPS 1231 * 1232 * may not need to set index 1233 * again ??? 1234 * take it out and try 1235 */ 1236 1237 id = ((uint32_t) 1238 apic_io_id[apic_io_max]) << 1239 24; 1240 1241 ioapic_write(ioapic_ix, 1242 APIC_ID_CMD, id); 1243 } 1244 } 1245 apic_io_max++; 1246 } 1247 } 1248 ioapicp++; 1249 } while (ioapicp->io_entry == APIC_IO_ENTRY); 1250 1251 apic_io_intrp = (struct apic_io_intr *)ioapicp; 1252 1253 intrp = apic_io_intrp; 1254 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1255 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || 1256 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { 1257 apic_irq_translate = 1; 1258 break; 1259 } 1260 intrp++; 1261 } 1262 1263 return (PSM_SUCCESS); 1264 } 1265 1266 boolean_t 1267 apic_cpu_in_range(int cpu) 1268 { 1269 cpu &= ~IRQ_USER_BOUND; 1270 /* Check whether cpu id is in valid range. */ 1271 if (cpu < 0 || cpu >= apic_nproc) { 1272 return (B_FALSE); 1273 } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) { 1274 /* 1275 * Check whether cpuid is in valid range if CPU DR is enabled. 1276 */ 1277 return (B_FALSE); 1278 } else if (!CPU_IN_SET(apic_cpumask, cpu)) { 1279 return (B_FALSE); 1280 } 1281 1282 return (B_TRUE); 1283 } 1284 1285 processorid_t 1286 apic_get_next_bind_cpu(void) 1287 { 1288 int i, count; 1289 processorid_t cpuid = 0; 1290 1291 for (count = 0; count < apic_nproc; count++) { 1292 if (apic_next_bind_cpu >= apic_nproc) { 1293 apic_next_bind_cpu = 0; 1294 } 1295 i = apic_next_bind_cpu++; 1296 if (apic_cpu_in_range(i)) { 1297 cpuid = i; 1298 break; 1299 } 1300 } 1301 1302 return (cpuid); 1303 } 1304 1305 uint16_t 1306 apic_get_apic_version() 1307 { 1308 int i; 1309 uchar_t min_io_apic_ver = 0; 1310 static uint16_t version; /* Cache as value is constant */ 1311 static boolean_t found = B_FALSE; /* Accomodate zero version */ 1312 1313 if (found == B_FALSE) { 1314 found = B_TRUE; 1315 1316 /* 1317 * Don't assume all IO APICs in the system are the same. 1318 * 1319 * Set to the minimum version. 1320 */ 1321 for (i = 0; i < apic_io_max; i++) { 1322 if ((apic_io_ver[i] != 0) && 1323 ((min_io_apic_ver == 0) || 1324 (min_io_apic_ver >= apic_io_ver[i]))) 1325 min_io_apic_ver = apic_io_ver[i]; 1326 } 1327 1328 /* Assume all local APICs are of the same version. */ 1329 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver; 1330 } 1331 return (version); 1332 } 1333 1334 static struct apic_mpfps_hdr * 1335 apic_find_fps_sig(caddr_t cptr, int len) 1336 { 1337 int i; 1338 1339 /* Look for the pattern "_MP_" */ 1340 for (i = 0; i < len; i += 16) { 1341 if ((*(cptr+i) == '_') && 1342 (*(cptr+i+1) == 'M') && 1343 (*(cptr+i+2) == 'P') && 1344 (*(cptr+i+3) == '_')) 1345 /*LINTED: pointer cast may result in improper alignment */ 1346 return ((struct apic_mpfps_hdr *)(cptr + i)); 1347 } 1348 return (NULL); 1349 } 1350 1351 static int 1352 apic_checksum(caddr_t bptr, int len) 1353 { 1354 int i; 1355 uchar_t cksum; 1356 1357 cksum = 0; 1358 for (i = 0; i < len; i++) 1359 cksum += *bptr++; 1360 return ((int)cksum); 1361 } 1362 1363 /* 1364 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge 1365 * needs special handling. We may need to chase up the device tree, 1366 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", 1367 * to find the IPIN at the root bus that relates to the IPIN on the 1368 * subsidiary bus (for ACPI or MP). We may, however, have an entry 1369 * in the MP table or the ACPI namespace for this device itself. 1370 * We handle both cases in the search below. 1371 */ 1372 /* this is the non-acpi version */ 1373 int 1374 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, 1375 struct apic_io_intr **intrp) 1376 { 1377 dev_info_t *dipp, *dip; 1378 int pci_irq; 1379 ddi_acc_handle_t cfg_handle; 1380 int bridge_devno, bridge_bus; 1381 int ipin; 1382 1383 dip = idip; 1384 1385 /*CONSTCOND*/ 1386 while (1) { 1387 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) || 1388 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS)) 1389 return (-1); 1390 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 1391 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 1392 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { 1393 pci_config_teardown(&cfg_handle); 1394 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, 1395 NULL) != 0) 1396 return (-1); 1397 /* 1398 * This is the rotating scheme documented in the 1399 * PCI-to-PCI spec. If the PCI-to-PCI bridge is 1400 * behind another PCI-to-PCI bridge, then it needs 1401 * to keep ascending until an interrupt entry is 1402 * found or the root is reached. 1403 */ 1404 ipin = (child_devno + child_ipin) % PCI_INTD; 1405 if (bridge_bus == 0 && apic_pci_bus_total == 1) 1406 bridge_bus = (int)apic_single_pci_busid; 1407 pci_irq = ((bridge_devno & 0x1f) << 2) | 1408 (ipin & 0x3); 1409 if ((*intrp = apic_find_io_intr_w_busid(pci_irq, 1410 bridge_bus)) != NULL) { 1411 return (pci_irq); 1412 } 1413 dip = dipp; 1414 child_devno = bridge_devno; 1415 child_ipin = ipin; 1416 } else { 1417 pci_config_teardown(&cfg_handle); 1418 return (-1); 1419 } 1420 } 1421 /*LINTED: function will not fall off the bottom */ 1422 } 1423 1424 uchar_t 1425 acpi_find_ioapic(int irq) 1426 { 1427 int i; 1428 1429 for (i = 0; i < apic_io_max; i++) { 1430 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) 1431 return ((uchar_t)i); 1432 } 1433 return (0xFF); /* shouldn't happen */ 1434 } 1435 1436 /* 1437 * See if two irqs are compatible for sharing a vector. 1438 * Currently we only support sharing of PCI devices. 1439 */ 1440 static int 1441 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) 1442 { 1443 uint_t level1, po1; 1444 uint_t level2, po2; 1445 1446 /* Assume active high by default */ 1447 po1 = 0; 1448 po2 = 0; 1449 1450 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) 1451 return (0); 1452 1453 if (iflag1.intr_el == INTR_EL_CONFORM) 1454 level1 = AV_LEVEL; 1455 else 1456 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1457 1458 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || 1459 (iflag1.intr_po == INTR_PO_CONFORM))) 1460 po1 = AV_ACTIVE_LOW; 1461 1462 if (iflag2.intr_el == INTR_EL_CONFORM) 1463 level2 = AV_LEVEL; 1464 else 1465 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; 1466 1467 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || 1468 (iflag2.intr_po == INTR_PO_CONFORM))) 1469 po2 = AV_ACTIVE_LOW; 1470 1471 if ((level1 == level2) && (po1 == po2)) 1472 return (1); 1473 1474 return (0); 1475 } 1476 1477 struct apic_io_intr * 1478 apic_find_io_intr_w_busid(int irqno, int busid) 1479 { 1480 struct apic_io_intr *intrp; 1481 1482 /* 1483 * It can have more than 1 entry with same source bus IRQ, 1484 * but unique with the source bus id 1485 */ 1486 intrp = apic_io_intrp; 1487 if (intrp != NULL) { 1488 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1489 if (intrp->intr_irq == irqno && 1490 intrp->intr_busid == busid && 1491 intrp->intr_type == IO_INTR_INT) 1492 return (intrp); 1493 intrp++; 1494 } 1495 } 1496 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" 1497 "busid %x:%x\n", irqno, busid)); 1498 return ((struct apic_io_intr *)NULL); 1499 } 1500 1501 1502 struct mps_bus_info { 1503 char *bus_name; 1504 int bus_id; 1505 } bus_info_array[] = { 1506 "ISA ", BUS_ISA, 1507 "PCI ", BUS_PCI, 1508 "EISA ", BUS_EISA, 1509 "XPRESS", BUS_XPRESS, 1510 "PCMCIA", BUS_PCMCIA, 1511 "VL ", BUS_VL, 1512 "CBUS ", BUS_CBUS, 1513 "CBUSII", BUS_CBUSII, 1514 "FUTURE", BUS_FUTURE, 1515 "INTERN", BUS_INTERN, 1516 "MBI ", BUS_MBI, 1517 "MBII ", BUS_MBII, 1518 "MPI ", BUS_MPI, 1519 "MPSA ", BUS_MPSA, 1520 "NUBUS ", BUS_NUBUS, 1521 "TC ", BUS_TC, 1522 "VME ", BUS_VME, 1523 "PCI-E ", BUS_PCIE 1524 }; 1525 1526 static int 1527 apic_find_bus_type(char *bus) 1528 { 1529 int i = 0; 1530 1531 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) 1532 if (strncmp(bus, bus_info_array[i].bus_name, 1533 strlen(bus_info_array[i].bus_name)) == 0) 1534 return (bus_info_array[i].bus_id); 1535 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); 1536 return (0); 1537 } 1538 1539 static int 1540 apic_find_bus(int busid) 1541 { 1542 struct apic_bus *busp; 1543 1544 busp = apic_busp; 1545 while (busp->bus_entry == APIC_BUS_ENTRY) { 1546 if (busp->bus_id == busid) 1547 return (apic_find_bus_type((char *)&busp->bus_str1)); 1548 busp++; 1549 } 1550 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); 1551 return (0); 1552 } 1553 1554 int 1555 apic_find_bus_id(int bustype) 1556 { 1557 struct apic_bus *busp; 1558 1559 busp = apic_busp; 1560 while (busp->bus_entry == APIC_BUS_ENTRY) { 1561 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) 1562 return (busp->bus_id); 1563 busp++; 1564 } 1565 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", 1566 bustype)); 1567 return (-1); 1568 } 1569 1570 /* 1571 * Check if a particular irq need to be reserved for any io_intr 1572 */ 1573 static struct apic_io_intr * 1574 apic_find_io_intr(int irqno) 1575 { 1576 struct apic_io_intr *intrp; 1577 1578 intrp = apic_io_intrp; 1579 if (intrp != NULL) { 1580 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { 1581 if (intrp->intr_irq == irqno && 1582 intrp->intr_type == IO_INTR_INT) 1583 return (intrp); 1584 intrp++; 1585 } 1586 } 1587 return ((struct apic_io_intr *)NULL); 1588 } 1589 1590 /* 1591 * Check if the given ioapicindex intin combination has already been assigned 1592 * an irq. If so return irqno. Else -1 1593 */ 1594 int 1595 apic_find_intin(uchar_t ioapic, uchar_t intin) 1596 { 1597 apic_irq_t *irqptr; 1598 int i; 1599 1600 /* find ioapic and intin in the apic_irq_table[] and return the index */ 1601 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1602 irqptr = apic_irq_table[i]; 1603 while (irqptr) { 1604 if ((irqptr->airq_mps_intr_index >= 0) && 1605 (irqptr->airq_intin_no == intin) && 1606 (irqptr->airq_ioapicindex == ioapic)) { 1607 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " 1608 "entry for ioapic:intin %x:%x " 1609 "shared interrupts ?", ioapic, intin)); 1610 return (i); 1611 } 1612 irqptr = irqptr->airq_next; 1613 } 1614 } 1615 return (-1); 1616 } 1617 1618 int 1619 apic_allocate_irq(int irq) 1620 { 1621 int freeirq, i; 1622 1623 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) 1624 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, 1625 (irq - 1))) == -1) { 1626 /* 1627 * if BIOS really defines every single irq in the mps 1628 * table, then don't worry about conflicting with 1629 * them, just use any free slot in apic_irq_table 1630 */ 1631 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 1632 if ((apic_irq_table[i] == NULL) || 1633 apic_irq_table[i]->airq_mps_intr_index == 1634 FREE_INDEX) { 1635 freeirq = i; 1636 break; 1637 } 1638 } 1639 if (freeirq == -1) { 1640 /* This shouldn't happen, but just in case */ 1641 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name); 1642 return (-1); 1643 } 1644 } 1645 if (apic_irq_table[freeirq] == NULL) { 1646 apic_irq_table[freeirq] = 1647 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); 1648 if (apic_irq_table[freeirq] == NULL) { 1649 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ", 1650 psm_name); 1651 return (-1); 1652 } 1653 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT; 1654 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; 1655 } 1656 return (freeirq); 1657 } 1658 1659 static int 1660 apic_find_free_irq(int start, int end) 1661 { 1662 int i; 1663 1664 for (i = start; i <= end; i++) 1665 /* Check if any I/O entry needs this IRQ */ 1666 if (apic_find_io_intr(i) == NULL) { 1667 /* Then see if it is free */ 1668 if ((apic_irq_table[i] == NULL) || 1669 (apic_irq_table[i]->airq_mps_intr_index == 1670 FREE_INDEX)) { 1671 return (i); 1672 } 1673 } 1674 return (-1); 1675 } 1676 1677 /* 1678 * compute the polarity, trigger mode and vector for programming into 1679 * the I/O apic and record in airq_rdt_entry. 1680 */ 1681 void 1682 apic_record_rdt_entry(apic_irq_t *irqptr, int irq) 1683 { 1684 int ioapicindex, bus_type, vector; 1685 short intr_index; 1686 uint_t level, po, io_po; 1687 struct apic_io_intr *iointrp; 1688 1689 intr_index = irqptr->airq_mps_intr_index; 1690 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " 1691 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, 1692 (void *)irqptr->airq_dip, irqptr->airq_vector)); 1693 1694 if (intr_index == RESERVE_INDEX) { 1695 apic_error |= APIC_ERR_INVALID_INDEX; 1696 return; 1697 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { 1698 return; 1699 } 1700 1701 vector = irqptr->airq_vector; 1702 ioapicindex = irqptr->airq_ioapicindex; 1703 /* Assume edge triggered by default */ 1704 level = 0; 1705 /* Assume active high by default */ 1706 po = 0; 1707 1708 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { 1709 ASSERT(irq < 16); 1710 if (eisa_level_intr_mask & (1 << irq)) 1711 level = AV_LEVEL; 1712 if (intr_index == FREE_INDEX && apic_defconf == 0) 1713 apic_error |= APIC_ERR_INVALID_INDEX; 1714 } else if (intr_index == ACPI_INDEX) { 1715 bus_type = irqptr->airq_iflag.bustype; 1716 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { 1717 if (bus_type == BUS_PCI) 1718 level = AV_LEVEL; 1719 } else 1720 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? 1721 AV_LEVEL : 0; 1722 if (level && 1723 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || 1724 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && 1725 bus_type == BUS_PCI))) 1726 po = AV_ACTIVE_LOW; 1727 } else { 1728 iointrp = apic_io_intrp + intr_index; 1729 bus_type = apic_find_bus(iointrp->intr_busid); 1730 if (iointrp->intr_el == INTR_EL_CONFORM) { 1731 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) 1732 level = AV_LEVEL; 1733 else if (bus_type == BUS_PCI) 1734 level = AV_LEVEL; 1735 } else 1736 level = (iointrp->intr_el == INTR_EL_LEVEL) ? 1737 AV_LEVEL : 0; 1738 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || 1739 (iointrp->intr_po == INTR_PO_CONFORM && 1740 bus_type == BUS_PCI))) 1741 po = AV_ACTIVE_LOW; 1742 } 1743 if (level) 1744 apic_level_intr[irq] = 1; 1745 /* 1746 * The 82489DX External APIC cannot do active low polarity interrupts. 1747 */ 1748 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) 1749 io_po = po; 1750 else 1751 io_po = 0; 1752 1753 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) 1754 prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x " 1755 "vector=0x%x cpu=0x%x\n\n", ioapicindex, 1756 irqptr->airq_intin_no, level, io_po, vector, 1757 irqptr->airq_cpu); 1758 1759 irqptr->airq_rdt_entry = level|io_po|vector; 1760 } 1761 1762 int 1763 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, 1764 int ipin, int *pci_irqp, iflag_t *intr_flagp) 1765 { 1766 1767 int status; 1768 acpi_psm_lnk_t acpipsmlnk; 1769 1770 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, 1771 intr_flagp)) == ACPI_PSM_SUCCESS) { 1772 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d " 1773 "from cache for device %s, instance #%d\n", psm_name, 1774 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1775 return (status); 1776 } 1777 1778 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); 1779 1780 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, 1781 &acpipsmlnk)) == ACPI_PSM_FAILURE) { 1782 APIC_VERBOSE_IRQ((CE_WARN, "%s: " 1783 " acpi_translate_pci_irq failed for device %s, instance" 1784 " #%d", psm_name, ddi_get_name(dip), 1785 ddi_get_instance(dip))); 1786 return (status); 1787 } 1788 1789 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { 1790 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, 1791 intr_flagp); 1792 if (status != ACPI_PSM_SUCCESS) { 1793 status = acpi_get_current_irq_resource(&acpipsmlnk, 1794 pci_irqp, intr_flagp); 1795 } 1796 } 1797 1798 if (status == ACPI_PSM_SUCCESS) { 1799 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, 1800 intr_flagp, &acpipsmlnk); 1801 1802 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] " 1803 "new irq %d for device %s, instance #%d\n", psm_name, 1804 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); 1805 } 1806 1807 return (status); 1808 } 1809 1810 /* 1811 * Adds an entry to the irq list passed in, and returns the new list. 1812 * Entries are added in priority order (lower numerical priorities are 1813 * placed closer to the head of the list) 1814 */ 1815 static prs_irq_list_t * 1816 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq, 1817 iflag_t *iflagp, acpi_prs_private_t *prsprvp) 1818 { 1819 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp; 1820 1821 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP); 1822 1823 newent->list_prio = priority; 1824 newent->irq = irq; 1825 newent->intrflags = *iflagp; 1826 newent->prsprv = *prsprvp; 1827 /* ->next is NULL from kmem_zalloc */ 1828 1829 /* 1830 * New list -- return the new entry as the list. 1831 */ 1832 if (listp == NULL) 1833 return (newent); 1834 1835 /* 1836 * Save original list pointer for return (since we're not modifying 1837 * the head) 1838 */ 1839 origlistp = listp; 1840 1841 /* 1842 * Insertion sort, with entries with identical keys stored AFTER 1843 * existing entries (the less-than-or-equal test of priority does 1844 * this for us). 1845 */ 1846 while (listp != NULL && listp->list_prio <= priority) { 1847 prevp = listp; 1848 listp = listp->next; 1849 } 1850 1851 newent->next = listp; 1852 1853 if (prevp == NULL) { /* Add at head of list (newent is the new head) */ 1854 return (newent); 1855 } else { 1856 prevp->next = newent; 1857 return (origlistp); 1858 } 1859 } 1860 1861 /* 1862 * Frees the list passed in, deallocating all memory and leaving *listpp 1863 * set to NULL. 1864 */ 1865 static void 1866 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp) 1867 { 1868 struct prs_irq_list_ent *nextp; 1869 1870 ASSERT(listpp != NULL); 1871 1872 while (*listpp != NULL) { 1873 nextp = (*listpp)->next; 1874 kmem_free(*listpp, sizeof (struct prs_irq_list_ent)); 1875 *listpp = nextp; 1876 } 1877 } 1878 1879 /* 1880 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of 1881 * irqs returned by the link device's _PRS method. The irqs are chosen 1882 * to minimize contention in situations where the interrupt link device 1883 * can be programmed to steer interrupts to different interrupt controller 1884 * inputs (some of which may already be in use). The list is sorted in order 1885 * of irqs to use, with the highest priority given to interrupt controller 1886 * inputs that are not shared. When an interrupt controller input 1887 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the 1888 * returned list in the order that minimizes sharing (thereby ensuring lowest 1889 * possible latency from interrupt trigger time to ISR execution time). 1890 */ 1891 static prs_irq_list_t * 1892 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip, 1893 int crs_irq) 1894 { 1895 int32_t irq; 1896 int i; 1897 prs_irq_list_t *prsirqlistp = NULL; 1898 iflag_t iflags; 1899 1900 while (irqlistent != NULL) { 1901 irqlistent->intr_flags.bustype = BUS_PCI; 1902 1903 for (i = 0; i < irqlistent->num_irqs; i++) { 1904 1905 irq = irqlistent->irqs[i]; 1906 1907 if (irq <= 0) { 1908 /* invalid irq number */ 1909 continue; 1910 } 1911 1912 if ((irq < 16) && (apic_reserved_irqlist[irq])) 1913 continue; 1914 1915 if ((apic_irq_table[irq] == NULL) || 1916 (apic_irq_table[irq]->airq_dip == dip)) { 1917 1918 prsirqlistp = acpi_insert_prs_irq_ent( 1919 prsirqlistp, 0 /* Highest priority */, irq, 1920 &irqlistent->intr_flags, 1921 &irqlistent->acpi_prs_prv); 1922 1923 /* 1924 * If we do not prefer the current irq from _CRS 1925 * or if we do and this irq is the same as the 1926 * current irq from _CRS, this is the one 1927 * to pick. 1928 */ 1929 if (!(apic_prefer_crs) || (irq == crs_irq)) { 1930 return (prsirqlistp); 1931 } 1932 continue; 1933 } 1934 1935 /* 1936 * Edge-triggered interrupts cannot be shared 1937 */ 1938 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) 1939 continue; 1940 1941 /* 1942 * To work around BIOSes that contain incorrect 1943 * interrupt polarity information in interrupt 1944 * descriptors returned by _PRS, we assume that 1945 * the polarity of the other device sharing this 1946 * interrupt controller input is compatible. 1947 * If it's not, the caller will catch it when 1948 * the caller invokes the link device's _CRS method 1949 * (after invoking its _SRS method). 1950 */ 1951 iflags = irqlistent->intr_flags; 1952 iflags.intr_po = 1953 apic_irq_table[irq]->airq_iflag.intr_po; 1954 1955 if (!acpi_intr_compatible(iflags, 1956 apic_irq_table[irq]->airq_iflag)) { 1957 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d " 1958 "not compatible [%x:%x:%x !~ %x:%x:%x]", 1959 psm_name, irq, 1960 iflags.intr_po, 1961 iflags.intr_el, 1962 iflags.bustype, 1963 apic_irq_table[irq]->airq_iflag.intr_po, 1964 apic_irq_table[irq]->airq_iflag.intr_el, 1965 apic_irq_table[irq]->airq_iflag.bustype)); 1966 continue; 1967 } 1968 1969 /* 1970 * If we prefer the irq from _CRS, no need 1971 * to search any further (and make sure 1972 * to add this irq with the highest priority 1973 * so it's tried first). 1974 */ 1975 if (crs_irq == irq && apic_prefer_crs) { 1976 1977 return (acpi_insert_prs_irq_ent( 1978 prsirqlistp, 1979 0 /* Highest priority */, 1980 irq, &iflags, 1981 &irqlistent->acpi_prs_prv)); 1982 } 1983 1984 /* 1985 * Priority is equal to the share count (lower 1986 * share count is higher priority). Note that 1987 * the intr flags passed in here are the ones we 1988 * changed above -- if incorrect, it will be 1989 * caught by the caller's _CRS flags comparison. 1990 */ 1991 prsirqlistp = acpi_insert_prs_irq_ent( 1992 prsirqlistp, 1993 apic_irq_table[irq]->airq_share, irq, 1994 &iflags, &irqlistent->acpi_prs_prv); 1995 } 1996 1997 /* Go to the next irqlist entry */ 1998 irqlistent = irqlistent->next; 1999 } 2000 2001 return (prsirqlistp); 2002 } 2003 2004 /* 2005 * Configures the irq for the interrupt link device identified by 2006 * acpipsmlnkp. 2007 * 2008 * Gets the current and the list of possible irq settings for the 2009 * device. If apic_unconditional_srs is not set, and the current 2010 * resource setting is in the list of possible irq settings, 2011 * current irq resource setting is passed to the caller. 2012 * 2013 * Otherwise, picks an irq number from the list of possible irq 2014 * settings, and sets the irq of the device to this value. 2015 * If prefer_crs is set, among a set of irq numbers in the list that have 2016 * the least number of devices sharing the interrupt, we pick current irq 2017 * resource setting if it is a member of this set. 2018 * 2019 * Passes the irq number in the value pointed to by pci_irqp, and 2020 * polarity and sensitivity in the structure pointed to by dipintrflagp 2021 * to the caller. 2022 * 2023 * Note that if setting the irq resource failed, but successfuly obtained 2024 * the current irq resource settings, passes the current irq resources 2025 * and considers it a success. 2026 * 2027 * Returns: 2028 * ACPI_PSM_SUCCESS on success. 2029 * 2030 * ACPI_PSM_FAILURE if an error occured during the configuration or 2031 * if a suitable irq was not found for this device, or if setting the 2032 * irq resource and obtaining the current resource fails. 2033 * 2034 */ 2035 static int 2036 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, 2037 int *pci_irqp, iflag_t *dipintr_flagp) 2038 { 2039 int32_t irq; 2040 int cur_irq = -1; 2041 acpi_irqlist_t *irqlistp; 2042 prs_irq_list_t *prs_irq_listp, *prs_irq_entp; 2043 boolean_t found_irq = B_FALSE; 2044 2045 dipintr_flagp->bustype = BUS_PCI; 2046 2047 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) 2048 == ACPI_PSM_FAILURE) { 2049 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine " 2050 "or assign IRQ for device %s, instance #%d: The system was " 2051 "unable to get the list of potential IRQs from ACPI.", 2052 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2053 2054 return (ACPI_PSM_FAILURE); 2055 } 2056 2057 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2058 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && 2059 (cur_irq > 0)) { 2060 /* 2061 * If an IRQ is set in CRS and that IRQ exists in the set 2062 * returned from _PRS, return that IRQ, otherwise print 2063 * a warning 2064 */ 2065 2066 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) 2067 == ACPI_PSM_SUCCESS) { 2068 2069 ASSERT(pci_irqp != NULL); 2070 *pci_irqp = cur_irq; 2071 acpi_free_irqlist(irqlistp); 2072 return (ACPI_PSM_SUCCESS); 2073 } 2074 2075 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the " 2076 "current irq %d for device %s, instance #%d in ACPI's " 2077 "list of possible irqs for this device. Picking one from " 2078 " the latter list.", psm_name, cur_irq, ddi_get_name(dip), 2079 ddi_get_instance(dip))); 2080 } 2081 2082 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip, 2083 cur_irq)) == NULL) { 2084 2085 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a " 2086 "suitable irq from the list of possible irqs for device " 2087 "%s, instance #%d in ACPI's list of possible irqs", 2088 psm_name, ddi_get_name(dip), ddi_get_instance(dip))); 2089 2090 acpi_free_irqlist(irqlistp); 2091 return (ACPI_PSM_FAILURE); 2092 } 2093 2094 acpi_free_irqlist(irqlistp); 2095 2096 for (prs_irq_entp = prs_irq_listp; 2097 prs_irq_entp != NULL && found_irq == B_FALSE; 2098 prs_irq_entp = prs_irq_entp->next) { 2099 2100 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv; 2101 irq = prs_irq_entp->irq; 2102 2103 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for " 2104 "device %s instance #%d\n", psm_name, irq, 2105 ddi_get_name(dip), ddi_get_instance(dip))); 2106 2107 if ((acpi_set_irq_resource(acpipsmlnkp, irq)) 2108 == ACPI_PSM_SUCCESS) { 2109 /* 2110 * setting irq was successful, check to make sure CRS 2111 * reflects that. If CRS does not agree with what we 2112 * set, return the irq that was set. 2113 */ 2114 2115 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, 2116 dipintr_flagp) == ACPI_PSM_SUCCESS) { 2117 2118 if (cur_irq != irq) 2119 APIC_VERBOSE_IRQ((CE_WARN, 2120 "!%s: IRQ resource set " 2121 "(irqno %d) for device %s " 2122 "instance #%d, differs from " 2123 "current setting irqno %d", 2124 psm_name, irq, ddi_get_name(dip), 2125 ddi_get_instance(dip), cur_irq)); 2126 } else { 2127 /* 2128 * On at least one system, there was a bug in 2129 * a DSDT method called by _STA, causing _STA to 2130 * indicate that the link device was disabled 2131 * (when, in fact, it was enabled). Since _SRS 2132 * succeeded, assume that _CRS is lying and use 2133 * the iflags from this _PRS interrupt choice. 2134 * If we're wrong about the flags, the polarity 2135 * will be incorrect and we may get an interrupt 2136 * storm, but there's not much else we can do 2137 * at this point. 2138 */ 2139 *dipintr_flagp = prs_irq_entp->intrflags; 2140 } 2141 2142 /* 2143 * Return the irq that was set, and not what _CRS 2144 * reports, since _CRS has been seen to return 2145 * different IRQs than what was passed to _SRS on some 2146 * systems (and just not return successfully on others). 2147 */ 2148 cur_irq = irq; 2149 found_irq = B_TRUE; 2150 } else { 2151 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource " 2152 "irq %d failed for device %s instance #%d", 2153 psm_name, irq, ddi_get_name(dip), 2154 ddi_get_instance(dip))); 2155 2156 if (cur_irq == -1) { 2157 acpi_destroy_prs_irq_list(&prs_irq_listp); 2158 return (ACPI_PSM_FAILURE); 2159 } 2160 } 2161 } 2162 2163 acpi_destroy_prs_irq_list(&prs_irq_listp); 2164 2165 if (!found_irq) 2166 return (ACPI_PSM_FAILURE); 2167 2168 ASSERT(pci_irqp != NULL); 2169 *pci_irqp = cur_irq; 2170 return (ACPI_PSM_SUCCESS); 2171 } 2172 2173 void 2174 ioapic_disable_redirection() 2175 { 2176 int ioapic_ix; 2177 int intin_max; 2178 int intin_ix; 2179 2180 /* Disable the I/O APIC redirection entries */ 2181 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) { 2182 2183 /* Bits 23-16 define the maximum redirection entries */ 2184 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16) 2185 & 0xff; 2186 2187 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) { 2188 /* 2189 * The assumption here is that this is safe, even for 2190 * systems with IOAPICs that suffer from the hardware 2191 * erratum because all devices have been quiesced before 2192 * this function is called from apic_shutdown() 2193 * (or equivalent). If that assumption turns out to be 2194 * false, this mask operation can induce the same 2195 * erratum result we're trying to avoid. 2196 */ 2197 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix, 2198 AV_MASK); 2199 } 2200 } 2201 } 2202 2203 /* 2204 * Looks for an IOAPIC with the specified physical address in the /ioapics 2205 * node in the device tree (created by the PCI enumerator). 2206 */ 2207 static boolean_t 2208 apic_is_ioapic_AMD_813x(uint32_t physaddr) 2209 { 2210 /* 2211 * Look in /ioapics, for the ioapic with 2212 * the physical address given 2213 */ 2214 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0); 2215 dev_info_t *ioapic_child; 2216 boolean_t rv = B_FALSE; 2217 int vid, did; 2218 uint64_t ioapic_paddr; 2219 boolean_t done = B_FALSE; 2220 2221 if (ioapicsnode == NULL) 2222 return (B_FALSE); 2223 2224 /* Load first child: */ 2225 ioapic_child = ddi_get_child(ioapicsnode); 2226 while (!done && ioapic_child != 0) { /* Iterate over children */ 2227 2228 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY, 2229 ioapic_child, DDI_PROP_DONTPASS, "reg", 0)) 2230 != 0 && physaddr == ioapic_paddr) { 2231 2232 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child, 2233 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0); 2234 2235 if (vid == VENID_AMD) { 2236 2237 did = ddi_prop_get_int(DDI_DEV_T_ANY, 2238 ioapic_child, DDI_PROP_DONTPASS, 2239 IOAPICS_PROP_DEVID, 0); 2240 2241 if (did == DEVID_8131_IOAPIC || 2242 did == DEVID_8132_IOAPIC) { 2243 rv = B_TRUE; 2244 done = B_TRUE; 2245 } 2246 } 2247 } 2248 2249 if (!done) 2250 ioapic_child = ddi_get_next_sibling(ioapic_child); 2251 } 2252 2253 /* The ioapics node was held by ddi_find_devinfo, so release it */ 2254 ndi_rele_devi(ioapicsnode); 2255 return (rv); 2256 } 2257 2258 struct apic_state { 2259 int32_t as_task_reg; 2260 int32_t as_dest_reg; 2261 int32_t as_format_reg; 2262 int32_t as_local_timer; 2263 int32_t as_pcint_vect; 2264 int32_t as_int_vect0; 2265 int32_t as_int_vect1; 2266 int32_t as_err_vect; 2267 int32_t as_init_count; 2268 int32_t as_divide_reg; 2269 int32_t as_spur_int_reg; 2270 uint32_t as_ioapic_ids[MAX_IO_APIC]; 2271 }; 2272 2273 2274 static int 2275 apic_acpi_enter_apicmode(void) 2276 { 2277 ACPI_OBJECT_LIST arglist; 2278 ACPI_OBJECT arg; 2279 ACPI_STATUS status; 2280 2281 /* Setup parameter object */ 2282 arglist.Count = 1; 2283 arglist.Pointer = &arg; 2284 arg.Type = ACPI_TYPE_INTEGER; 2285 arg.Integer.Value = ACPI_APIC_MODE; 2286 2287 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); 2288 /* 2289 * Per ACPI spec - section 5.8.1 _PIC Method 2290 * calling the \_PIC control method is optional for the OS 2291 * and might not be found. It's ok to not fail in such cases. 2292 * This is the case on linux KVM and qemu (status AE_NOT_FOUND) 2293 */ 2294 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 2295 cmn_err(CE_NOTE, 2296 "!apic: Reporting APIC mode failed (via _PIC), err: 0x%x", 2297 ACPI_FAILURE(status)); 2298 return (PSM_FAILURE); 2299 } else { 2300 return (PSM_SUCCESS); 2301 } 2302 } 2303 2304 2305 static void 2306 apic_save_state(struct apic_state *sp) 2307 { 2308 int i, cpuid; 2309 ulong_t iflag; 2310 2311 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp)) 2312 /* 2313 * First the local APIC. 2314 */ 2315 sp->as_task_reg = apic_reg_ops->apic_get_pri(); 2316 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG); 2317 if (apic_mode == LOCAL_APIC) 2318 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG); 2319 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 2320 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT); 2321 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0); 2322 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1); 2323 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT); 2324 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT); 2325 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG); 2326 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG); 2327 2328 /* 2329 * If on the boot processor then save the IOAPICs' IDs 2330 */ 2331 if ((cpuid = psm_get_cpu_id()) == 0) { 2332 2333 iflag = intr_clear(); 2334 lock_set(&apic_ioapic_lock); 2335 2336 for (i = 0; i < apic_io_max; i++) 2337 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD); 2338 2339 lock_clear(&apic_ioapic_lock); 2340 intr_restore(iflag); 2341 } 2342 2343 /* apic_state() is currently invoked only in Suspend/Resume */ 2344 apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND; 2345 } 2346 2347 static void 2348 apic_restore_state(struct apic_state *sp) 2349 { 2350 int i; 2351 ulong_t iflag; 2352 2353 /* 2354 * First the local APIC. 2355 */ 2356 apic_reg_ops->apic_write_task_reg(sp->as_task_reg); 2357 if (apic_mode == LOCAL_APIC) { 2358 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg); 2359 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg); 2360 } 2361 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer); 2362 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect); 2363 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0); 2364 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1); 2365 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect); 2366 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count); 2367 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg); 2368 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg); 2369 2370 /* 2371 * the following only needs to be done once, so we do it on the 2372 * boot processor, since we know that we only have one of those 2373 */ 2374 if (psm_get_cpu_id() == 0) { 2375 2376 iflag = intr_clear(); 2377 lock_set(&apic_ioapic_lock); 2378 2379 /* Restore IOAPICs' APIC IDs */ 2380 for (i = 0; i < apic_io_max; i++) { 2381 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]); 2382 } 2383 2384 lock_clear(&apic_ioapic_lock); 2385 intr_restore(iflag); 2386 2387 /* 2388 * Reenter APIC mode before restoring LNK devices 2389 */ 2390 (void) apic_acpi_enter_apicmode(); 2391 2392 /* 2393 * restore acpi link device mappings 2394 */ 2395 acpi_restore_link_devices(); 2396 } 2397 } 2398 2399 /* 2400 * Returns 0 on success 2401 */ 2402 int 2403 apic_state(psm_state_request_t *rp) 2404 { 2405 PMD(PMD_SX, ("apic_state ")) 2406 switch (rp->psr_cmd) { 2407 case PSM_STATE_ALLOC: 2408 rp->req.psm_state_req.psr_state = 2409 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP); 2410 if (rp->req.psm_state_req.psr_state == NULL) 2411 return (ENOMEM); 2412 rp->req.psm_state_req.psr_state_size = 2413 sizeof (struct apic_state); 2414 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n", 2415 rp->req.psm_state_req.psr_state, 2416 rp->req.psm_state_req.psr_state_size)) 2417 return (0); 2418 2419 case PSM_STATE_FREE: 2420 kmem_free(rp->req.psm_state_req.psr_state, 2421 rp->req.psm_state_req.psr_state_size); 2422 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n", 2423 rp->req.psm_state_req.psr_state, 2424 rp->req.psm_state_req.psr_state_size)) 2425 return (0); 2426 2427 case PSM_STATE_SAVE: 2428 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n", 2429 rp->req.psm_state_req.psr_state, 2430 rp->req.psm_state_req.psr_state_size)) 2431 apic_save_state(rp->req.psm_state_req.psr_state); 2432 return (0); 2433 2434 case PSM_STATE_RESTORE: 2435 apic_restore_state(rp->req.psm_state_req.psr_state); 2436 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n", 2437 rp->req.psm_state_req.psr_state, 2438 rp->req.psm_state_req.psr_state_size)) 2439 return (0); 2440 2441 default: 2442 return (EINVAL); 2443 } 2444 }