1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2017, Joyent, Inc. All rights reserved. 31 */ 32 33 /* 34 * To understand how the pcplusmp module interacts with the interrupt subsystem 35 * read the theory statement in uts/i86pc/os/intr.c. 36 */ 37 38 /* 39 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 40 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 42 * PSMI 1.5 extensions are supported in Solaris Nevada. 43 * PSMI 1.6 extensions are supported in Solaris Nevada. 44 * PSMI 1.7 extensions are supported in Solaris Nevada. 45 */ 46 #define PSMI_1_7 47 48 #include <sys/processor.h> 49 #include <sys/time.h> 50 #include <sys/psm.h> 51 #include <sys/smp_impldefs.h> 52 #include <sys/cram.h> 53 #include <sys/acpi/acpi.h> 54 #include <sys/acpica.h> 55 #include <sys/psm_common.h> 56 #include <sys/apic.h> 57 #include <sys/pit.h> 58 #include <sys/ddi.h> 59 #include <sys/sunddi.h> 60 #include <sys/ddi_impldefs.h> 61 #include <sys/pci.h> 62 #include <sys/promif.h> 63 #include <sys/x86_archext.h> 64 #include <sys/cpc_impl.h> 65 #include <sys/uadmin.h> 66 #include <sys/panic.h> 67 #include <sys/debug.h> 68 #include <sys/archsystm.h> 69 #include <sys/trap.h> 70 #include <sys/machsystm.h> 71 #include <sys/sysmacros.h> 72 #include <sys/cpuvar.h> 73 #include <sys/rm_platter.h> 74 #include <sys/privregs.h> 75 #include <sys/note.h> 76 #include <sys/pci_intr_lib.h> 77 #include <sys/spl.h> 78 #include <sys/clock.h> 79 #include <sys/cyclic.h> 80 #include <sys/dditypes.h> 81 #include <sys/sunddi.h> 82 #include <sys/x_call.h> 83 #include <sys/reboot.h> 84 #include <sys/hpet.h> 85 #include <sys/apic_common.h> 86 #include <sys/apic_timer.h> 87 88 /* 89 * Local Function Prototypes 90 */ 91 static void apic_init_intr(void); 92 93 /* 94 * standard MP entries 95 */ 96 static int apic_probe(void); 97 static int apic_getclkirq(int ipl); 98 static void apic_init(void); 99 static void apic_picinit(void); 100 static int apic_post_cpu_start(void); 101 static int apic_intr_enter(int ipl, int *vect); 102 static void apic_setspl(int ipl); 103 static void x2apic_setspl(int ipl); 104 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); 105 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); 106 static int apic_disable_intr(processorid_t cpun); 107 static void apic_enable_intr(processorid_t cpun); 108 static int apic_get_ipivect(int ipl, int type); 109 static void apic_post_cyclic_setup(void *arg); 110 111 #define UCHAR_MAX UINT8_MAX 112 113 /* 114 * The following vector assignments influence the value of ipltopri and 115 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program 116 * idle to 0 and IPL 0 to 0xf to differentiate idle in case 117 * we care to do so in future. Note some IPLs which are rarely used 118 * will share the vector ranges and heavily used IPLs (5 and 6) have 119 * a wide range. 120 * 121 * This array is used to initialize apic_ipls[] (in apic_init()). 122 * 123 * IPL Vector range. as passed to intr_enter 124 * 0 none. 125 * 1,2,3 0x20-0x2f 0x0-0xf 126 * 4 0x30-0x3f 0x10-0x1f 127 * 5 0x40-0x5f 0x20-0x3f 128 * 6 0x60-0x7f 0x40-0x5f 129 * 7,8,9 0x80-0x8f 0x60-0x6f 130 * 10 0x90-0x9f 0x70-0x7f 131 * 11 0xa0-0xaf 0x80-0x8f 132 * ... ... 133 * 15 0xe0-0xef 0xc0-0xcf 134 * 15 0xf0-0xff 0xd0-0xdf 135 */ 136 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 137 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 138 }; 139 /* 140 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] 141 * NOTE that this is vector as passed into intr_enter which is 142 * programmed vector - 0x20 (APIC_BASE_VECT) 143 */ 144 145 uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ 146 /* The taskpri to be programmed into apic to mask given ipl */ 147 148 /* 149 * Correlation of the hardware vector to the IPL in use, initialized 150 * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate 151 * to the IPLs in apic_vectortoipl on some systems that share interrupt lines 152 * connected to errata-stricken IOAPICs 153 */ 154 uchar_t apic_ipls[APIC_AVAIL_VECTOR]; 155 156 /* 157 * Patchable global variables. 158 */ 159 int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ 160 int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ 161 162 /* 163 * Local static data 164 */ 165 static struct psm_ops apic_ops = { 166 apic_probe, 167 168 apic_init, 169 apic_picinit, 170 apic_intr_enter, 171 apic_intr_exit, 172 apic_setspl, 173 apic_addspl, 174 apic_delspl, 175 apic_disable_intr, 176 apic_enable_intr, 177 (int (*)(int))NULL, /* psm_softlvl_to_irq */ 178 (void (*)(int))NULL, /* psm_set_softintr */ 179 180 apic_set_idlecpu, 181 apic_unset_idlecpu, 182 183 apic_clkinit, 184 apic_getclkirq, 185 (void (*)(void))NULL, /* psm_hrtimeinit */ 186 apic_gethrtime, 187 188 apic_get_next_processorid, 189 apic_cpu_start, 190 apic_post_cpu_start, 191 apic_shutdown, 192 apic_get_ipivect, 193 apic_send_ipi, 194 195 (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ 196 (void (*)(int, char *))NULL, /* psm_notify_error */ 197 (void (*)(int))NULL, /* psm_notify_func */ 198 apic_timer_reprogram, 199 apic_timer_enable, 200 apic_timer_disable, 201 apic_post_cyclic_setup, 202 apic_preshutdown, 203 apic_intr_ops, /* Advanced DDI Interrupt framework */ 204 apic_state, /* save, restore apic state for S3 */ 205 apic_cpu_ops, /* CPU control interface. */ 206 }; 207 208 struct psm_ops *psmops = &apic_ops; 209 210 static struct psm_info apic_psm_info = { 211 PSM_INFO_VER01_7, /* version */ 212 PSM_OWN_EXCLUSIVE, /* ownership */ 213 (struct psm_ops *)&apic_ops, /* operation */ 214 APIC_PCPLUSMP_NAME, /* machine name */ 215 "pcplusmp v1.4 compatible", 216 }; 217 218 static void *apic_hdlp; 219 220 /* to gather intr data and redistribute */ 221 static void apic_redistribute_compute(void); 222 223 /* 224 * This is the loadable module wrapper 225 */ 226 227 int 228 _init(void) 229 { 230 if (apic_coarse_hrtime) 231 apic_ops.psm_gethrtime = &apic_gettime; 232 return (psm_mod_init(&apic_hdlp, &apic_psm_info)); 233 } 234 235 int 236 _fini(void) 237 { 238 return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); 239 } 240 241 int 242 _info(struct modinfo *modinfop) 243 { 244 return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); 245 } 246 247 static int 248 apic_probe(void) 249 { 250 /* check if apix is initialized */ 251 if (apix_enable && apix_loaded()) 252 return (PSM_FAILURE); 253 254 /* 255 * Check whether x2APIC mode was activated by BIOS. We don't support 256 * that in pcplusmp as apix normally handles that. 257 */ 258 if (apic_local_mode() == LOCAL_X2APIC) 259 return (PSM_FAILURE); 260 261 /* continue using pcplusmp PSM */ 262 apix_enable = 0; 263 264 return (apic_probe_common(apic_psm_info.p_mach_idstring)); 265 } 266 267 static uchar_t 268 apic_xlate_vector_by_irq(uchar_t irq) 269 { 270 if (apic_irq_table[irq] == NULL) 271 return (0); 272 273 return (apic_irq_table[irq]->airq_vector); 274 } 275 276 void 277 apic_init(void) 278 { 279 int i; 280 int j = 1; 281 282 psm_get_ioapicid = apic_get_ioapicid; 283 psm_get_localapicid = apic_get_localapicid; 284 psm_xlate_vector_by_irq = apic_xlate_vector_by_irq; 285 286 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ 287 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 288 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && 289 (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) 290 /* get to highest vector at the same ipl */ 291 continue; 292 for (; j <= apic_vectortoipl[i]; j++) { 293 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + 294 APIC_BASE_VECT; 295 } 296 } 297 for (; j < MAXIPL + 1; j++) 298 /* fill up any empty ipltopri slots */ 299 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; 300 apic_init_common(); 301 302 #if !defined(__amd64) 303 if (cpuid_have_cr8access(CPU)) 304 apic_have_32bit_cr8 = 1; 305 #endif 306 } 307 308 static void 309 apic_init_intr(void) 310 { 311 processorid_t cpun = psm_get_cpu_id(); 312 uint_t nlvt; 313 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 314 315 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 316 317 if (apic_mode == LOCAL_APIC) { 318 /* 319 * We are running APIC in MMIO mode. 320 */ 321 if (apic_flat_model) { 322 apic_reg_ops->apic_write(APIC_FORMAT_REG, 323 APIC_FLAT_MODEL); 324 } else { 325 apic_reg_ops->apic_write(APIC_FORMAT_REG, 326 APIC_CLUSTER_MODEL); 327 } 328 329 apic_reg_ops->apic_write(APIC_DEST_REG, 330 AV_HIGH_ORDER >> cpun); 331 } 332 333 if (apic_directed_EOI_supported()) { 334 /* 335 * Setting the 12th bit in the Spurious Interrupt Vector 336 * Register suppresses broadcast EOIs generated by the local 337 * APIC. The suppression of broadcast EOIs happens only when 338 * interrupts are level-triggered. 339 */ 340 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 341 } 342 343 /* need to enable APIC before unmasking NMI */ 344 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 345 346 /* 347 * Presence of an invalid vector with delivery mode AV_FIXED can 348 * cause an error interrupt, even if the entry is masked...so 349 * write a valid vector to LVT entries along with the mask bit 350 */ 351 352 /* All APICs have timer and LINT0/1 */ 353 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 354 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 355 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 356 357 /* 358 * On integrated APICs, the number of LVT entries is 359 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 360 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 361 */ 362 363 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 364 nlvt = 3; 365 } else { 366 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 367 0xFF) + 1; 368 } 369 370 if (nlvt >= 5) { 371 /* Enable performance counter overflow interrupt */ 372 373 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 374 apic_enable_cpcovf_intr = 0; 375 if (apic_enable_cpcovf_intr) { 376 if (apic_cpcovf_vect == 0) { 377 int ipl = APIC_PCINT_IPL; 378 int irq = apic_get_ipivect(ipl, -1); 379 380 ASSERT(irq != -1); 381 apic_cpcovf_vect = 382 apic_irq_table[irq]->airq_vector; 383 ASSERT(apic_cpcovf_vect); 384 (void) add_avintr(NULL, ipl, 385 (avfunc)kcpc_hw_overflow_intr, 386 "apic pcint", irq, NULL, NULL, NULL, NULL); 387 kcpc_hw_overflow_intr_installed = 1; 388 kcpc_hw_enable_cpc_intr = 389 apic_cpcovf_mask_clear; 390 } 391 apic_reg_ops->apic_write(APIC_PCINT_VECT, 392 apic_cpcovf_vect); 393 } 394 } 395 396 if (nlvt >= 6) { 397 /* Only mask TM intr if the BIOS apparently doesn't use it */ 398 399 uint32_t lvtval; 400 401 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 402 if (((lvtval & AV_MASK) == AV_MASK) || 403 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 404 apic_reg_ops->apic_write(APIC_THERM_VECT, 405 AV_MASK|APIC_RESV_IRQ); 406 } 407 } 408 409 /* Enable error interrupt */ 410 411 if (nlvt >= 4 && apic_enable_error_intr) { 412 if (apic_errvect == 0) { 413 int ipl = 0xf; /* get highest priority intr */ 414 int irq = apic_get_ipivect(ipl, -1); 415 416 ASSERT(irq != -1); 417 apic_errvect = apic_irq_table[irq]->airq_vector; 418 ASSERT(apic_errvect); 419 /* 420 * Not PSMI compliant, but we are going to merge 421 * with ON anyway 422 */ 423 (void) add_avintr((void *)NULL, ipl, 424 (avfunc)apic_error_intr, "apic error intr", 425 irq, NULL, NULL, NULL, NULL); 426 } 427 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 428 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 429 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 430 } 431 432 /* Enable CMCI interrupt */ 433 if (cmi_enable_cmci) { 434 435 mutex_enter(&cmci_cpu_setup_lock); 436 if (cmci_cpu_setup_registered == 0) { 437 mutex_enter(&cpu_lock); 438 register_cpu_setup_func(cmci_cpu_setup, NULL); 439 mutex_exit(&cpu_lock); 440 cmci_cpu_setup_registered = 1; 441 } 442 mutex_exit(&cmci_cpu_setup_lock); 443 444 if (apic_cmci_vect == 0) { 445 int ipl = 0x2; 446 int irq = apic_get_ipivect(ipl, -1); 447 448 ASSERT(irq != -1); 449 apic_cmci_vect = apic_irq_table[irq]->airq_vector; 450 ASSERT(apic_cmci_vect); 451 452 (void) add_avintr(NULL, ipl, 453 (avfunc)cmi_cmci_trap, 454 "apic cmci intr", irq, NULL, NULL, NULL, NULL); 455 } 456 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 457 } 458 } 459 460 static void 461 apic_picinit(void) 462 { 463 int i, j; 464 uint_t isr; 465 466 /* 467 * Initialize and enable interrupt remapping before apic 468 * hardware initialization 469 */ 470 apic_intrmap_init(apic_mode); 471 472 /* 473 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 474 * bit on without clearing it with EOI. Since softint 475 * uses vector 0x20 to interrupt itself, so softint will 476 * not work on this machine. In order to fix this problem 477 * a check is made to verify all the isr bits are clear. 478 * If not, EOIs are issued to clear the bits. 479 */ 480 for (i = 7; i >= 1; i--) { 481 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 482 if (isr != 0) 483 for (j = 0; ((j < 32) && (isr != 0)); j++) 484 if (isr & (1 << j)) { 485 apic_reg_ops->apic_write( 486 APIC_EOI_REG, 0); 487 isr &= ~(1 << j); 488 apic_error |= APIC_ERR_BOOT_EOI; 489 } 490 } 491 492 /* set a flag so we know we have run apic_picinit() */ 493 apic_picinit_called = 1; 494 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 495 LOCK_INIT_CLEAR(&apic_ioapic_lock); 496 LOCK_INIT_CLEAR(&apic_error_lock); 497 LOCK_INIT_CLEAR(&apic_mode_switch_lock); 498 499 picsetup(); /* initialise the 8259 */ 500 501 /* add nmi handler - least priority nmi handler */ 502 LOCK_INIT_CLEAR(&apic_nmi_lock); 503 504 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 505 "pcplusmp NMI handler", (caddr_t)NULL)) 506 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); 507 508 /* 509 * Check for directed-EOI capability in the local APIC. 510 */ 511 if (apic_directed_EOI_supported() == 1) { 512 apic_set_directed_EOI_handler(); 513 } 514 515 apic_init_intr(); 516 517 /* enable apic mode if imcr present */ 518 if (apic_imcrp) { 519 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 520 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 521 } 522 523 ioapic_init_intr(IOAPIC_MASK); 524 } 525 526 #ifdef DEBUG 527 void 528 apic_break(void) 529 { 530 } 531 #endif /* DEBUG */ 532 533 /* 534 * platform_intr_enter 535 * 536 * Called at the beginning of the interrupt service routine to 537 * mask all level equal to and below the interrupt priority 538 * of the interrupting vector. An EOI should be given to 539 * the interrupt controller to enable other HW interrupts. 540 * 541 * Return -1 for spurious interrupts 542 * 543 */ 544 /*ARGSUSED*/ 545 static int 546 apic_intr_enter(int ipl, int *vectorp) 547 { 548 uchar_t vector; 549 int nipl; 550 int irq; 551 ulong_t iflag; 552 apic_cpus_info_t *cpu_infop; 553 554 /* 555 * The real vector delivered is (*vectorp + 0x20), but our caller 556 * subtracts 0x20 from the vector before passing it to us. 557 * (That's why APIC_BASE_VECT is 0x20.) 558 */ 559 vector = (uchar_t)*vectorp; 560 561 /* if interrupted by the clock, increment apic_nsec_since_boot */ 562 if (vector == apic_clkvect) { 563 if (!apic_oneshot) { 564 /* NOTE: this is not MT aware */ 565 apic_hrtime_stamp++; 566 apic_nsec_since_boot += apic_nsec_per_intr; 567 apic_hrtime_stamp++; 568 last_count_read = apic_hertz_count; 569 apic_redistribute_compute(); 570 } 571 572 /* We will avoid all the book keeping overhead for clock */ 573 nipl = apic_ipls[vector]; 574 575 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; 576 577 apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]); 578 apic_reg_ops->apic_send_eoi(0); 579 580 return (nipl); 581 } 582 583 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 584 585 if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { 586 cpu_infop->aci_spur_cnt++; 587 return (APIC_INT_SPURIOUS); 588 } 589 590 /* Check if the vector we got is really what we need */ 591 if (apic_revector_pending) { 592 /* 593 * Disable interrupts for the duration of 594 * the vector translation to prevent a self-race for 595 * the apic_revector_lock. This cannot be done 596 * in apic_xlate_vector because it is recursive and 597 * we want the vector translation to be atomic with 598 * respect to other (higher-priority) interrupts. 599 */ 600 iflag = intr_clear(); 601 vector = apic_xlate_vector(vector + APIC_BASE_VECT) - 602 APIC_BASE_VECT; 603 intr_restore(iflag); 604 } 605 606 nipl = apic_ipls[vector]; 607 *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; 608 609 apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]); 610 611 cpu_infop->aci_current[nipl] = (uchar_t)irq; 612 cpu_infop->aci_curipl = (uchar_t)nipl; 613 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 614 615 /* 616 * apic_level_intr could have been assimilated into the irq struct. 617 * but, having it as a character array is more efficient in terms of 618 * cache usage. So, we leave it as is. 619 */ 620 if (!apic_level_intr[irq]) { 621 apic_reg_ops->apic_send_eoi(0); 622 } 623 624 #ifdef DEBUG 625 APIC_DEBUG_BUF_PUT(vector); 626 APIC_DEBUG_BUF_PUT(irq); 627 APIC_DEBUG_BUF_PUT(nipl); 628 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 629 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 630 drv_usecwait(apic_stretch_interrupts); 631 632 if (apic_break_on_cpu == psm_get_cpu_id()) 633 apic_break(); 634 #endif /* DEBUG */ 635 return (nipl); 636 } 637 638 /* 639 * This macro is a common code used by MMIO local apic and X2APIC 640 * local apic. 641 */ 642 #define APIC_INTR_EXIT() \ 643 { \ 644 cpu_infop = &apic_cpus[psm_get_cpu_id()]; \ 645 if (apic_level_intr[irq]) \ 646 apic_reg_ops->apic_send_eoi(irq); \ 647 cpu_infop->aci_curipl = (uchar_t)prev_ipl; \ 648 /* ISR above current pri could not be in progress */ \ 649 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \ 650 } 651 652 /* 653 * Any changes made to this function must also change X2APIC 654 * version of intr_exit. 655 */ 656 void 657 apic_intr_exit(int prev_ipl, int irq) 658 { 659 apic_cpus_info_t *cpu_infop; 660 661 apic_reg_ops->apic_write_task_reg(apic_ipltopri[prev_ipl]); 662 663 APIC_INTR_EXIT(); 664 } 665 666 /* 667 * Same as apic_intr_exit() except it uses MSR rather than MMIO 668 * to access local apic registers. 669 */ 670 void 671 x2apic_intr_exit(int prev_ipl, int irq) 672 { 673 apic_cpus_info_t *cpu_infop; 674 675 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]); 676 APIC_INTR_EXIT(); 677 } 678 679 intr_exit_fn_t 680 psm_intr_exit_fn(void) 681 { 682 if (apic_mode == LOCAL_X2APIC) 683 return (x2apic_intr_exit); 684 685 return (apic_intr_exit); 686 } 687 688 /* 689 * Mask all interrupts below or equal to the given IPL. 690 * Any changes made to this function must also change X2APIC 691 * version of setspl. 692 */ 693 static void 694 apic_setspl(int ipl) 695 { 696 apic_reg_ops->apic_write_task_reg(apic_ipltopri[ipl]); 697 698 /* interrupts at ipl above this cannot be in progress */ 699 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 700 /* 701 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts 702 * have enough time to come in before the priority is raised again 703 * during the idle() loop. 704 */ 705 if (apic_setspl_delay) 706 (void) apic_reg_ops->apic_get_pri(); 707 } 708 709 /* 710 * X2APIC version of setspl. 711 * Mask all interrupts below or equal to the given IPL 712 */ 713 static void 714 x2apic_setspl(int ipl) 715 { 716 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]); 717 718 /* interrupts at ipl above this cannot be in progress */ 719 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 720 } 721 722 /*ARGSUSED*/ 723 static int 724 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) 725 { 726 return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); 727 } 728 729 static int 730 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) 731 { 732 return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); 733 } 734 735 static int 736 apic_post_cpu_start(void) 737 { 738 int cpun; 739 static int cpus_started = 1; 740 741 /* We know this CPU + BSP started successfully. */ 742 cpus_started++; 743 744 /* 745 * On BSP we would have enabled X2APIC, if supported by processor, 746 * in acpi_probe(), but on AP we do it here. 747 * 748 * We enable X2APIC mode only if BSP is running in X2APIC & the 749 * local APIC mode of the current CPU is MMIO (xAPIC). 750 */ 751 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 752 apic_local_mode() == LOCAL_APIC) { 753 apic_enable_x2apic(); 754 } 755 756 /* 757 * Switch back to x2apic IPI sending method for performance when target 758 * CPU has entered x2apic mode. 759 */ 760 if (apic_mode == LOCAL_X2APIC) { 761 apic_switch_ipi_callback(B_FALSE); 762 } 763 764 splx(ipltospl(LOCK_LEVEL)); 765 apic_init_intr(); 766 767 /* 768 * since some systems don't enable the internal cache on the non-boot 769 * cpus, so we have to enable them here 770 */ 771 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 772 773 #ifdef DEBUG 774 APIC_AV_PENDING_SET(); 775 #else 776 if (apic_mode == LOCAL_APIC) 777 APIC_AV_PENDING_SET(); 778 #endif /* DEBUG */ 779 780 /* 781 * We may be booting, or resuming from suspend; aci_status will 782 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 783 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 784 */ 785 cpun = psm_get_cpu_id(); 786 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 787 788 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 789 return (PSM_SUCCESS); 790 } 791 792 /* 793 * type == -1 indicates it is an internal request. Do not change 794 * resv_vector for these requests 795 */ 796 static int 797 apic_get_ipivect(int ipl, int type) 798 { 799 uchar_t vector; 800 int irq; 801 802 if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) { 803 if ((vector = apic_allocate_vector(ipl, irq, 1))) { 804 apic_irq_table[irq]->airq_mps_intr_index = 805 RESERVE_INDEX; 806 apic_irq_table[irq]->airq_vector = vector; 807 if (type != -1) { 808 apic_resv_vector[ipl] = vector; 809 } 810 return (irq); 811 } 812 } 813 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 814 return (-1); /* shouldn't happen */ 815 } 816 817 static int 818 apic_getclkirq(int ipl) 819 { 820 int irq; 821 822 if ((irq = apic_get_ipivect(ipl, -1)) == -1) 823 return (-1); 824 /* 825 * Note the vector in apic_clkvect for per clock handling. 826 */ 827 apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; 828 APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", 829 apic_clkvect)); 830 return (irq); 831 } 832 833 /* 834 * Try and disable all interrupts. We just assign interrupts to other 835 * processors based on policy. If any were bound by user request, we 836 * let them continue and return failure. We do not bother to check 837 * for cache affinity while rebinding. 838 */ 839 840 static int 841 apic_disable_intr(processorid_t cpun) 842 { 843 int bind_cpu = 0, i, hardbound = 0; 844 apic_irq_t *irq_ptr; 845 ulong_t iflag; 846 847 iflag = intr_clear(); 848 lock_set(&apic_ioapic_lock); 849 850 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 851 if (apic_reprogram_info[i].done == B_FALSE) { 852 if (apic_reprogram_info[i].bindcpu == cpun) { 853 /* 854 * CPU is busy -- it's the target of 855 * a pending reprogramming attempt 856 */ 857 lock_clear(&apic_ioapic_lock); 858 intr_restore(iflag); 859 return (PSM_FAILURE); 860 } 861 } 862 } 863 864 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 865 866 apic_cpus[cpun].aci_curipl = 0; 867 868 i = apic_min_device_irq; 869 for (; i <= apic_max_device_irq; i++) { 870 /* 871 * If there are bound interrupts on this cpu, then 872 * rebind them to other processors. 873 */ 874 if ((irq_ptr = apic_irq_table[i]) != NULL) { 875 ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || 876 (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || 877 (apic_cpu_in_range(irq_ptr->airq_temp_cpu))); 878 879 if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { 880 hardbound = 1; 881 continue; 882 } 883 884 if (irq_ptr->airq_temp_cpu == cpun) { 885 do { 886 bind_cpu = 887 apic_find_cpu(APIC_CPU_INTR_ENABLE); 888 } while (apic_rebind_all(irq_ptr, bind_cpu)); 889 } 890 } 891 } 892 893 lock_clear(&apic_ioapic_lock); 894 intr_restore(iflag); 895 896 if (hardbound) { 897 cmn_err(CE_WARN, "Could not disable interrupts on %d" 898 "due to user bound interrupts", cpun); 899 return (PSM_FAILURE); 900 } 901 else 902 return (PSM_SUCCESS); 903 } 904 905 /* 906 * Bind interrupts to the CPU's local APIC. 907 * Interrupts should not be bound to a CPU's local APIC until the CPU 908 * is ready to receive interrupts. 909 */ 910 static void 911 apic_enable_intr(processorid_t cpun) 912 { 913 int i; 914 apic_irq_t *irq_ptr; 915 ulong_t iflag; 916 917 iflag = intr_clear(); 918 lock_set(&apic_ioapic_lock); 919 920 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 921 922 i = apic_min_device_irq; 923 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 924 if ((irq_ptr = apic_irq_table[i]) != NULL) { 925 if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { 926 (void) apic_rebind_all(irq_ptr, 927 irq_ptr->airq_cpu); 928 } 929 } 930 } 931 932 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) 933 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND; 934 935 lock_clear(&apic_ioapic_lock); 936 intr_restore(iflag); 937 } 938 939 /* 940 * If this module needs a periodic handler for the interrupt distribution, it 941 * can be added here. The argument to the periodic handler is not currently 942 * used, but is reserved for future. 943 */ 944 static void 945 apic_post_cyclic_setup(void *arg) 946 { 947 _NOTE(ARGUNUSED(arg)) 948 949 cyc_handler_t cyh; 950 cyc_time_t cyt; 951 952 /* cpu_lock is held */ 953 /* set up a periodic handler for intr redistribution */ 954 955 /* 956 * In peridoc mode intr redistribution processing is done in 957 * apic_intr_enter during clk intr processing 958 */ 959 if (!apic_oneshot) 960 return; 961 962 /* 963 * Register a periodical handler for the redistribution processing. 964 * Though we would generally prefer to use the DDI interface for 965 * periodic handler invocation, ddi_periodic_add(9F), we are 966 * unfortunately already holding cpu_lock, which ddi_periodic_add will 967 * attempt to take for us. Thus, we add our own cyclic directly: 968 */ 969 cyh.cyh_func = (void (*)(void *))apic_redistribute_compute; 970 cyh.cyh_arg = NULL; 971 cyh.cyh_level = CY_LOW_LEVEL; 972 973 cyt.cyt_when = 0; 974 cyt.cyt_interval = apic_redistribute_sample_interval; 975 976 apic_cyclic_id = cyclic_add(&cyh, &cyt); 977 } 978 979 static void 980 apic_redistribute_compute(void) 981 { 982 int i, j, max_busy; 983 984 if (apic_enable_dynamic_migration) { 985 if (++apic_nticks == apic_sample_factor_redistribution) { 986 /* 987 * Time to call apic_intr_redistribute(). 988 * reset apic_nticks. This will cause max_busy 989 * to be calculated below and if it is more than 990 * apic_int_busy, we will do the whole thing 991 */ 992 apic_nticks = 0; 993 } 994 max_busy = 0; 995 for (i = 0; i < apic_nproc; i++) { 996 if (!apic_cpu_in_range(i)) 997 continue; 998 999 /* 1000 * Check if curipl is non zero & if ISR is in 1001 * progress 1002 */ 1003 if (((j = apic_cpus[i].aci_curipl) != 0) && 1004 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1005 1006 int irq; 1007 apic_cpus[i].aci_busy++; 1008 irq = apic_cpus[i].aci_current[j]; 1009 apic_irq_table[irq]->airq_busy++; 1010 } 1011 1012 if (!apic_nticks && 1013 (apic_cpus[i].aci_busy > max_busy)) 1014 max_busy = apic_cpus[i].aci_busy; 1015 } 1016 if (!apic_nticks) { 1017 if (max_busy > apic_int_busy_mark) { 1018 /* 1019 * We could make the following check be 1020 * skipped > 1 in which case, we get a 1021 * redistribution at half the busy mark (due to 1022 * double interval). Need to be able to collect 1023 * more empirical data to decide if that is a 1024 * good strategy. Punt for now. 1025 */ 1026 if (apic_skipped_redistribute) { 1027 apic_cleanup_busy(); 1028 apic_skipped_redistribute = 0; 1029 } else { 1030 apic_intr_redistribute(); 1031 } 1032 } else 1033 apic_skipped_redistribute++; 1034 } 1035 } 1036 } 1037 1038 1039 /* 1040 * The following functions are in the platform specific file so that they 1041 * can be different functions depending on whether we are running on 1042 * bare metal or a hypervisor. 1043 */ 1044 1045 /* 1046 * Check to make sure there are enough irq slots 1047 */ 1048 int 1049 apic_check_free_irqs(int count) 1050 { 1051 int i, avail; 1052 1053 avail = 0; 1054 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 1055 if ((apic_irq_table[i] == NULL) || 1056 apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { 1057 if (++avail >= count) 1058 return (PSM_SUCCESS); 1059 } 1060 } 1061 return (PSM_FAILURE); 1062 } 1063 1064 /* 1065 * This function allocates "count" MSI vector(s) for the given "dip/pri/type" 1066 */ 1067 int 1068 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri, 1069 int behavior) 1070 { 1071 int rcount, i; 1072 uchar_t start, irqno; 1073 uint32_t cpu = 0; 1074 major_t major; 1075 apic_irq_t *irqptr; 1076 1077 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p " 1078 "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", 1079 (void *)dip, inum, pri, count, behavior)); 1080 1081 if (count > 1) { 1082 if (behavior == DDI_INTR_ALLOC_STRICT && 1083 apic_multi_msi_enable == 0) 1084 return (0); 1085 if (apic_multi_msi_enable == 0) 1086 count = 1; 1087 } 1088 1089 if ((rcount = apic_navail_vector(dip, pri)) > count) 1090 rcount = count; 1091 else if (rcount == 0 || (rcount < count && 1092 behavior == DDI_INTR_ALLOC_STRICT)) 1093 return (0); 1094 1095 /* if not ISP2, then round it down */ 1096 if (!ISP2(rcount)) 1097 rcount = 1 << (highbit(rcount) - 1); 1098 1099 mutex_enter(&airq_mutex); 1100 1101 for (start = 0; rcount > 0; rcount >>= 1) { 1102 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || 1103 behavior == DDI_INTR_ALLOC_STRICT) 1104 break; 1105 } 1106 1107 if (start == 0) { 1108 /* no vector available */ 1109 mutex_exit(&airq_mutex); 1110 return (0); 1111 } 1112 1113 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 1114 /* not enough free irq slots available */ 1115 mutex_exit(&airq_mutex); 1116 return (0); 1117 } 1118 1119 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 1120 for (i = 0; i < rcount; i++) { 1121 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 1122 (uchar_t)-1) { 1123 /* 1124 * shouldn't happen because of the 1125 * apic_check_free_irqs() check earlier 1126 */ 1127 mutex_exit(&airq_mutex); 1128 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 1129 "apic_allocate_irq failed\n")); 1130 return (i); 1131 } 1132 apic_max_device_irq = max(irqno, apic_max_device_irq); 1133 apic_min_device_irq = min(irqno, apic_min_device_irq); 1134 irqptr = apic_irq_table[irqno]; 1135 #ifdef DEBUG 1136 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) 1137 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 1138 "apic_vector_to_irq is not APIC_RESV_IRQ\n")); 1139 #endif 1140 apic_vector_to_irq[start + i] = (uchar_t)irqno; 1141 1142 irqptr->airq_vector = (uchar_t)(start + i); 1143 irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ 1144 irqptr->airq_intin_no = (uchar_t)rcount; 1145 ASSERT(pri >= 0 && pri <= UCHAR_MAX); 1146 irqptr->airq_ipl = (uchar_t)pri; 1147 irqptr->airq_vector = start + i; 1148 irqptr->airq_origirq = (uchar_t)(inum + i); 1149 irqptr->airq_share_id = 0; 1150 irqptr->airq_mps_intr_index = MSI_INDEX; 1151 irqptr->airq_dip = dip; 1152 irqptr->airq_major = major; 1153 if (i == 0) /* they all bound to the same cpu */ 1154 cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 1155 0xff, 0xff); 1156 else 1157 irqptr->airq_cpu = cpu; 1158 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x " 1159 "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, 1160 (void *)irqptr->airq_dip, irqptr->airq_vector, 1161 irqptr->airq_origirq, pri)); 1162 } 1163 mutex_exit(&airq_mutex); 1164 return (rcount); 1165 } 1166 1167 /* 1168 * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type" 1169 */ 1170 int 1171 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri, 1172 int behavior) 1173 { 1174 int rcount, i; 1175 major_t major; 1176 1177 mutex_enter(&airq_mutex); 1178 1179 if ((rcount = apic_navail_vector(dip, pri)) > count) 1180 rcount = count; 1181 else if (rcount == 0 || (rcount < count && 1182 behavior == DDI_INTR_ALLOC_STRICT)) { 1183 rcount = 0; 1184 goto out; 1185 } 1186 1187 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 1188 /* not enough free irq slots available */ 1189 rcount = 0; 1190 goto out; 1191 } 1192 1193 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 1194 for (i = 0; i < rcount; i++) { 1195 uchar_t vector, irqno; 1196 apic_irq_t *irqptr; 1197 1198 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 1199 (uchar_t)-1) { 1200 /* 1201 * shouldn't happen because of the 1202 * apic_check_free_irqs() check earlier 1203 */ 1204 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 1205 "apic_allocate_irq failed\n")); 1206 rcount = i; 1207 goto out; 1208 } 1209 if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) { 1210 /* 1211 * shouldn't happen because of the 1212 * apic_navail_vector() call earlier 1213 */ 1214 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 1215 "apic_allocate_vector failed\n")); 1216 rcount = i; 1217 goto out; 1218 } 1219 apic_max_device_irq = max(irqno, apic_max_device_irq); 1220 apic_min_device_irq = min(irqno, apic_min_device_irq); 1221 irqptr = apic_irq_table[irqno]; 1222 irqptr->airq_vector = (uchar_t)vector; 1223 ASSERT(pri >= 0 && pri <= UCHAR_MAX); 1224 irqptr->airq_ipl = (uchar_t)pri; 1225 irqptr->airq_origirq = (uchar_t)(inum + i); 1226 irqptr->airq_share_id = 0; 1227 irqptr->airq_mps_intr_index = MSIX_INDEX; 1228 irqptr->airq_dip = dip; 1229 irqptr->airq_major = major; 1230 irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); 1231 } 1232 out: 1233 mutex_exit(&airq_mutex); 1234 return (rcount); 1235 } 1236 1237 /* 1238 * Allocate a free vector for irq at ipl. Takes care of merging of multiple 1239 * IPLs into a single APIC level as well as stretching some IPLs onto multiple 1240 * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority 1241 * requests and allocated only when pri is set. 1242 */ 1243 uchar_t 1244 apic_allocate_vector(int ipl, int irq, int pri) 1245 { 1246 int lowest, highest, i; 1247 1248 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 1249 lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; 1250 1251 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 1252 lowest -= APIC_VECTOR_PER_IPL; 1253 1254 #ifdef DEBUG 1255 if (apic_restrict_vector) /* for testing shared interrupt logic */ 1256 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; 1257 #endif /* DEBUG */ 1258 if (pri == 0) 1259 highest -= APIC_HI_PRI_VECTS; 1260 1261 for (i = lowest; i <= highest; i++) { 1262 if (APIC_CHECK_RESERVE_VECTORS(i)) 1263 continue; 1264 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { 1265 apic_vector_to_irq[i] = (uchar_t)irq; 1266 ASSERT(i >= 0 && i <= UCHAR_MAX); 1267 return ((uchar_t)i); 1268 } 1269 } 1270 1271 return (0); 1272 } 1273 1274 /* Mark vector as not being used by any irq */ 1275 void 1276 apic_free_vector(uchar_t vector) 1277 { 1278 apic_vector_to_irq[vector] = APIC_RESV_IRQ; 1279 } 1280 1281 /* 1282 * Call rebind to do the actual programming. 1283 * Must be called with interrupts disabled and apic_ioapic_lock held 1284 * 'p' is polymorphic -- if this function is called to process a deferred 1285 * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which 1286 * the irq pointer is retrieved. If not doing deferred reprogramming, 1287 * p is of the type 'apic_irq_t *'. 1288 * 1289 * apic_ioapic_lock must be held across this call, as it protects apic_rebind 1290 * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be 1291 * taken offline after a cpu is selected, but before apic_rebind is called to 1292 * bind interrupts to it. 1293 */ 1294 int 1295 apic_setup_io_intr(void *p, int irq, boolean_t deferred) 1296 { 1297 apic_irq_t *irqptr; 1298 struct ioapic_reprogram_data *drep = NULL; 1299 int rv; 1300 1301 if (deferred) { 1302 drep = (struct ioapic_reprogram_data *)p; 1303 ASSERT(drep != NULL); 1304 irqptr = drep->irqp; 1305 } else 1306 irqptr = (apic_irq_t *)p; 1307 1308 ASSERT(irqptr != NULL); 1309 1310 rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); 1311 if (rv) { 1312 /* 1313 * CPU is not up or interrupts are disabled. Fall back to 1314 * the first available CPU 1315 */ 1316 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE), 1317 drep); 1318 } 1319 1320 return (rv); 1321 } 1322 1323 1324 uchar_t 1325 apic_modify_vector(uchar_t vector, int irq) 1326 { 1327 apic_vector_to_irq[vector] = (uchar_t)irq; 1328 return (vector); 1329 } 1330 1331 char * 1332 apic_get_apic_type(void) 1333 { 1334 return (apic_psm_info.p_mach_idstring); 1335 } 1336 1337 void 1338 x2apic_update_psm(void) 1339 { 1340 struct psm_ops *pops = &apic_ops; 1341 1342 ASSERT(pops != NULL); 1343 1344 pops->psm_intr_exit = x2apic_intr_exit; 1345 pops->psm_setspl = x2apic_setspl; 1346 1347 pops->psm_send_ipi = x2apic_send_ipi; 1348 send_dirintf = pops->psm_send_ipi; 1349 1350 apic_mode = LOCAL_X2APIC; 1351 apic_change_ops(); 1352 }