1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
  14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
  15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
  16  * Copyright 2017 Joyent, Inc.
  17  */
  18 
  19 /*
  20  * blkdev driver for NVMe compliant storage devices
  21  *
  22  * This driver was written to conform to version 1.2.1 of the NVMe
  23  * specification.  It may work with newer versions, but that is completely
  24  * untested and disabled by default.
  25  *
  26  * The driver has only been tested on x86 systems and will not work on big-
  27  * endian systems without changes to the code accessing registers and data
  28  * structures used by the hardware.
  29  *
  30  *
  31  * Interrupt Usage:
  32  *
  33  * The driver will use a single interrupt while configuring the device as the
  34  * specification requires, but contrary to the specification it will try to use
  35  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
  36  * will switch to multiple-message MSI(-X) if supported. The driver wants to
  37  * have one interrupt vector per CPU, but it will work correctly if less are
  38  * available. Interrupts can be shared by queues, the interrupt handler will
  39  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
  40  * the admin queue will share an interrupt with one I/O queue. The interrupt
  41  * handler will retrieve completed commands from all queues sharing an interrupt
  42  * vector and will post them to a taskq for completion processing.
  43  *
  44  *
  45  * Command Processing:
  46  *
  47  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
  48  * to 65536 I/O commands. The driver will configure one I/O queue pair per
  49  * available interrupt vector, with the queue length usually much smaller than
  50  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
  51  * interrupt vectors will be used.
  52  *
  53  * Additionally the hardware provides a single special admin queue pair that can
  54  * hold up to 4096 admin commands.
  55  *
  56  * From the hardware perspective both queues of a queue pair are independent,
  57  * but they share some driver state: the command array (holding pointers to
  58  * commands currently being processed by the hardware) and the active command
  59  * counter. Access to a queue pair and the shared state is protected by
  60  * nq_mutex.
  61  *
  62  * When a command is submitted to a queue pair the active command counter is
  63  * incremented and a pointer to the command is stored in the command array. The
  64  * array index is used as command identifier (CID) in the submission queue
  65  * entry. Some commands may take a very long time to complete, and if the queue
  66  * wraps around in that time a submission may find the next array slot to still
  67  * be used by a long-running command. In this case the array is sequentially
  68  * searched for the next free slot. The length of the command array is the same
  69  * as the configured queue length. Queue overrun is prevented by the semaphore,
  70  * so a command submission may block if the queue is full.
  71  *
  72  *
  73  * Polled I/O Support:
  74  *
  75  * For kernel core dump support the driver can do polled I/O. As interrupts are
  76  * turned off while dumping the driver will just submit a command in the regular
  77  * way, and then repeatedly attempt a command retrieval until it gets the
  78  * command back.
  79  *
  80  *
  81  * Namespace Support:
  82  *
  83  * NVMe devices can have multiple namespaces, each being a independent data
  84  * store. The driver supports multiple namespaces and creates a blkdev interface
  85  * for each namespace found. Namespaces can have various attributes to support
  86  * thin provisioning and protection information. This driver does not support
  87  * any of this and ignores namespaces that have these attributes.
  88  *
  89  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
  90  * (EUI64). This driver uses the EUI64 if present to generate the devid and
  91  * passes it to blkdev to use it in the device node names. As this is currently
  92  * untested namespaces with EUI64 are ignored by default.
  93  *
  94  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
  95  * single controller. This is an artificial limit imposed by the driver to be
  96  * able to address a reasonable number of controllers and namespaces using a
  97  * 32bit minor node number.
  98  *
  99  *
 100  * Minor nodes:
 101  *
 102  * For each NVMe device the driver exposes one minor node for the controller and
 103  * one minor node for each namespace. The only operations supported by those
 104  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
 105  * interface for the nvmeadm(1M) utility.
 106  *
 107  *
 108  * Blkdev Interface:
 109  *
 110  * This driver uses blkdev to do all the heavy lifting involved with presenting
 111  * a disk device to the system. As a result, the processing of I/O requests is
 112  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
 113  * setup, and splitting of transfers into manageable chunks.
 114  *
 115  * I/O requests coming in from blkdev are turned into NVM commands and posted to
 116  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
 117  * queues. There is currently no timeout handling of I/O commands.
 118  *
 119  * Blkdev also supports querying device/media information and generating a
 120  * devid. The driver reports the best block size as determined by the namespace
 121  * format back to blkdev as physical block size to support partition and block
 122  * alignment. The devid is either based on the namespace EUI64, if present, or
 123  * composed using the device vendor ID, model number, serial number, and the
 124  * namespace ID.
 125  *
 126  *
 127  * Error Handling:
 128  *
 129  * Error handling is currently limited to detecting fatal hardware errors,
 130  * either by asynchronous events, or synchronously through command status or
 131  * admin command timeouts. In case of severe errors the device is fenced off,
 132  * all further requests will return EIO. FMA is then called to fault the device.
 133  *
 134  * The hardware has a limit for outstanding asynchronous event requests. Before
 135  * this limit is known the driver assumes it is at least 1 and posts a single
 136  * asynchronous request. Later when the limit is known more asynchronous event
 137  * requests are posted to allow quicker reception of error information. When an
 138  * asynchronous event is posted by the hardware the driver will parse the error
 139  * status fields and log information or fault the device, depending on the
 140  * severity of the asynchronous event. The asynchronous event request is then
 141  * reused and posted to the admin queue again.
 142  *
 143  * On command completion the command status is checked for errors. In case of
 144  * errors indicating a driver bug the driver panics. Almost all other error
 145  * status values just cause EIO to be returned.
 146  *
 147  * Command timeouts are currently detected for all admin commands except
 148  * asynchronous event requests. If a command times out and the hardware appears
 149  * to be healthy the driver attempts to abort the command. The original command
 150  * timeout is also applied to the abort command. If the abort times out too the
 151  * driver assumes the device to be dead, fences it off, and calls FMA to retire
 152  * it. In all other cases the aborted command should return immediately with a
 153  * status indicating it was aborted, and the driver will wait indefinitely for
 154  * that to happen. No timeout handling of normal I/O commands is presently done.
 155  *
 156  * Any command that times out due to the controller dropping dead will be put on
 157  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
 158  * memory being reused by the system and later be written to by a "dead" NVMe
 159  * controller.
 160  *
 161  *
 162  * Locking:
 163  *
 164  * Each queue pair has its own nq_mutex, which must be held when accessing the
 165  * associated queue registers or the shared state of the queue pair. Callers of
 166  * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
 167  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
 168  * themselves.
 169  *
 170  * Each command also has its own nc_mutex, which is associated with the
 171  * condition variable nc_cv. It is only used on admin commands which are run
 172  * synchronously. In that case it must be held across calls to
 173  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
 174  * nvme_admin_cmd(). It must also be held whenever the completion state of the
 175  * command is changed or while a admin command timeout is handled.
 176  *
 177  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
 178  * More than one nc_mutex may only be held when aborting commands. In this case,
 179  * the nc_mutex of the command to be aborted must be held across the call to
 180  * nvme_abort_cmd() to prevent the command from completing while the abort is in
 181  * progress.
 182  *
 183  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
 184  * and exclusive-open flag nm_oexcl.
 185  *
 186  *
 187  * Quiesce / Fast Reboot:
 188  *
 189  * The driver currently does not support fast reboot. A quiesce(9E) entry point
 190  * is still provided which is used to send a shutdown notification to the
 191  * device.
 192  *
 193  *
 194  * Driver Configuration:
 195  *
 196  * The following driver properties can be changed to control some aspects of the
 197  * drivers operation:
 198  * - strict-version: can be set to 0 to allow devices conforming to newer
 199  *   versions or namespaces with EUI64 to be used
 200  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
 201  *   specific command status as a fatal error leading device faulting
 202  * - admin-queue-len: the maximum length of the admin queue (16-4096)
 203  * - io-queue-len: the maximum length of the I/O queues (16-65536)
 204  * - async-event-limit: the maximum number of asynchronous event requests to be
 205  *   posted by the driver
 206  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
 207  *   cache
 208  * - min-phys-block-size: the minimum physical block size to report to blkdev,
 209  *   which is among other things the basis for ZFS vdev ashift
 210  *
 211  *
 212  * TODO:
 213  * - figure out sane default for I/O queue depth reported to blkdev
 214  * - FMA handling of media errors
 215  * - support for devices supporting very large I/O requests using chained PRPs
 216  * - support for configuring hardware parameters like interrupt coalescing
 217  * - support for media formatting and hard partitioning into namespaces
 218  * - support for big-endian systems
 219  * - support for fast reboot
 220  * - support for firmware updates
 221  * - support for NVMe Subsystem Reset (1.1)
 222  * - support for Scatter/Gather lists (1.1)
 223  * - support for Reservations (1.1)
 224  * - support for power management
 225  */
 226 
 227 #include <sys/byteorder.h>
 228 #ifdef _BIG_ENDIAN
 229 #error nvme driver needs porting for big-endian platforms
 230 #endif
 231 
 232 #include <sys/modctl.h>
 233 #include <sys/conf.h>
 234 #include <sys/devops.h>
 235 #include <sys/ddi.h>
 236 #include <sys/sunddi.h>
 237 #include <sys/sunndi.h>
 238 #include <sys/bitmap.h>
 239 #include <sys/sysmacros.h>
 240 #include <sys/param.h>
 241 #include <sys/varargs.h>
 242 #include <sys/cpuvar.h>
 243 #include <sys/disp.h>
 244 #include <sys/blkdev.h>
 245 #include <sys/atomic.h>
 246 #include <sys/archsystm.h>
 247 #include <sys/sata/sata_hba.h>
 248 #include <sys/stat.h>
 249 #include <sys/policy.h>
 250 #include <sys/list.h>
 251 
 252 #include <sys/nvme.h>
 253 
 254 #ifdef __x86
 255 #include <sys/x86_archext.h>
 256 #endif
 257 
 258 #include "nvme_reg.h"
 259 #include "nvme_var.h"
 260 
 261 
 262 /* NVMe spec version supported */
 263 static const int nvme_version_major = 1;
 264 static const int nvme_version_minor = 2;
 265 
 266 /* tunable for admin command timeout in seconds, default is 1s */
 267 int nvme_admin_cmd_timeout = 1;
 268 
 269 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
 270 int nvme_format_cmd_timeout = 600;
 271 
 272 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
 273 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
 274 static int nvme_quiesce(dev_info_t *);
 275 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
 276 static int nvme_setup_interrupts(nvme_t *, int, int);
 277 static void nvme_release_interrupts(nvme_t *);
 278 static uint_t nvme_intr(caddr_t, caddr_t);
 279 
 280 static void nvme_shutdown(nvme_t *, int, boolean_t);
 281 static boolean_t nvme_reset(nvme_t *, boolean_t);
 282 static int nvme_init(nvme_t *);
 283 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
 284 static void nvme_free_cmd(nvme_cmd_t *);
 285 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
 286     bd_xfer_t *);
 287 static void nvme_admin_cmd(nvme_cmd_t *, int);
 288 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
 289 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
 290 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
 291 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
 292 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
 293 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
 294 static void nvme_wakeup_cmd(void *);
 295 static void nvme_async_event_task(void *);
 296 
 297 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
 298 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
 299 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
 300 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
 301 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
 302 static inline int nvme_check_cmd_status(nvme_cmd_t *);
 303 
 304 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
 305 static void nvme_async_event(nvme_t *);
 306 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
 307     boolean_t, uint8_t);
 308 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
 309 static int nvme_identify(nvme_t *, uint32_t, void **);
 310 static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
 311     uint32_t *);
 312 static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
 313     void **, size_t *);
 314 static int nvme_write_cache_set(nvme_t *, boolean_t);
 315 static int nvme_set_nqueues(nvme_t *, uint16_t *);
 316 
 317 static void nvme_free_dma(nvme_dma_t *);
 318 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
 319     nvme_dma_t **);
 320 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
 321     nvme_dma_t **);
 322 static void nvme_free_qpair(nvme_qpair_t *);
 323 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
 324 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
 325 
 326 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
 327 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
 328 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
 329 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
 330 
 331 static boolean_t nvme_check_regs_hdl(nvme_t *);
 332 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
 333 
 334 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
 335 
 336 static void nvme_bd_xfer_done(void *);
 337 static void nvme_bd_driveinfo(void *, bd_drive_t *);
 338 static int nvme_bd_mediainfo(void *, bd_media_t *);
 339 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
 340 static int nvme_bd_read(void *, bd_xfer_t *);
 341 static int nvme_bd_write(void *, bd_xfer_t *);
 342 static int nvme_bd_sync(void *, bd_xfer_t *);
 343 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
 344 
 345 static int nvme_prp_dma_constructor(void *, void *, int);
 346 static void nvme_prp_dma_destructor(void *, void *);
 347 
 348 static void nvme_prepare_devid(nvme_t *, uint32_t);
 349 
 350 static int nvme_open(dev_t *, int, int, cred_t *);
 351 static int nvme_close(dev_t, int, int, cred_t *);
 352 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
 353 
 354 #define NVME_MINOR_INST_SHIFT   9
 355 #define NVME_MINOR(inst, nsid)  (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
 356 #define NVME_MINOR_INST(minor)  ((minor) >> NVME_MINOR_INST_SHIFT)
 357 #define NVME_MINOR_NSID(minor)  ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
 358 #define NVME_MINOR_MAX          (NVME_MINOR(1, 0) - 2)
 359 
 360 static void *nvme_state;
 361 static kmem_cache_t *nvme_cmd_cache;
 362 
 363 /*
 364  * DMA attributes for queue DMA memory
 365  *
 366  * Queue DMA memory must be page aligned. The maximum length of a queue is
 367  * 65536 entries, and an entry can be 64 bytes long.
 368  */
 369 static ddi_dma_attr_t nvme_queue_dma_attr = {
 370         .dma_attr_version       = DMA_ATTR_V0,
 371         .dma_attr_addr_lo       = 0,
 372         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 373         .dma_attr_count_max     = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
 374         .dma_attr_align         = 0x1000,
 375         .dma_attr_burstsizes    = 0x7ff,
 376         .dma_attr_minxfer       = 0x1000,
 377         .dma_attr_maxxfer       = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
 378         .dma_attr_seg           = 0xffffffffffffffffULL,
 379         .dma_attr_sgllen        = 1,
 380         .dma_attr_granular      = 1,
 381         .dma_attr_flags         = 0,
 382 };
 383 
 384 /*
 385  * DMA attributes for transfers using Physical Region Page (PRP) entries
 386  *
 387  * A PRP entry describes one page of DMA memory using the page size specified
 388  * in the controller configuration's memory page size register (CC.MPS). It uses
 389  * a 64bit base address aligned to this page size. There is no limitation on
 390  * chaining PRPs together for arbitrarily large DMA transfers.
 391  */
 392 static ddi_dma_attr_t nvme_prp_dma_attr = {
 393         .dma_attr_version       = DMA_ATTR_V0,
 394         .dma_attr_addr_lo       = 0,
 395         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 396         .dma_attr_count_max     = 0xfff,
 397         .dma_attr_align         = 0x1000,
 398         .dma_attr_burstsizes    = 0x7ff,
 399         .dma_attr_minxfer       = 0x1000,
 400         .dma_attr_maxxfer       = 0x1000,
 401         .dma_attr_seg           = 0xfff,
 402         .dma_attr_sgllen        = -1,
 403         .dma_attr_granular      = 1,
 404         .dma_attr_flags         = 0,
 405 };
 406 
 407 /*
 408  * DMA attributes for transfers using scatter/gather lists
 409  *
 410  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
 411  * 32bit length field. SGL Segment and SGL Last Segment entries require the
 412  * length to be a multiple of 16 bytes.
 413  */
 414 static ddi_dma_attr_t nvme_sgl_dma_attr = {
 415         .dma_attr_version       = DMA_ATTR_V0,
 416         .dma_attr_addr_lo       = 0,
 417         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 418         .dma_attr_count_max     = 0xffffffffUL,
 419         .dma_attr_align         = 1,
 420         .dma_attr_burstsizes    = 0x7ff,
 421         .dma_attr_minxfer       = 0x10,
 422         .dma_attr_maxxfer       = 0xfffffffffULL,
 423         .dma_attr_seg           = 0xffffffffffffffffULL,
 424         .dma_attr_sgllen        = -1,
 425         .dma_attr_granular      = 0x10,
 426         .dma_attr_flags         = 0
 427 };
 428 
 429 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
 430         .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 431         .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 432         .devacc_attr_dataorder  = DDI_STRICTORDER_ACC
 433 };
 434 
 435 static struct cb_ops nvme_cb_ops = {
 436         .cb_open        = nvme_open,
 437         .cb_close       = nvme_close,
 438         .cb_strategy    = nodev,
 439         .cb_print       = nodev,
 440         .cb_dump        = nodev,
 441         .cb_read        = nodev,
 442         .cb_write       = nodev,
 443         .cb_ioctl       = nvme_ioctl,
 444         .cb_devmap      = nodev,
 445         .cb_mmap        = nodev,
 446         .cb_segmap      = nodev,
 447         .cb_chpoll      = nochpoll,
 448         .cb_prop_op     = ddi_prop_op,
 449         .cb_str         = 0,
 450         .cb_flag        = D_NEW | D_MP,
 451         .cb_rev         = CB_REV,
 452         .cb_aread       = nodev,
 453         .cb_awrite      = nodev
 454 };
 455 
 456 static struct dev_ops nvme_dev_ops = {
 457         .devo_rev       = DEVO_REV,
 458         .devo_refcnt    = 0,
 459         .devo_getinfo   = ddi_no_info,
 460         .devo_identify  = nulldev,
 461         .devo_probe     = nulldev,
 462         .devo_attach    = nvme_attach,
 463         .devo_detach    = nvme_detach,
 464         .devo_reset     = nodev,
 465         .devo_cb_ops    = &nvme_cb_ops,
 466         .devo_bus_ops   = NULL,
 467         .devo_power     = NULL,
 468         .devo_quiesce   = nvme_quiesce,
 469 };
 470 
 471 static struct modldrv nvme_modldrv = {
 472         .drv_modops     = &mod_driverops,
 473         .drv_linkinfo   = "NVMe v1.1b",
 474         .drv_dev_ops    = &nvme_dev_ops
 475 };
 476 
 477 static struct modlinkage nvme_modlinkage = {
 478         .ml_rev         = MODREV_1,
 479         .ml_linkage     = { &nvme_modldrv, NULL }
 480 };
 481 
 482 static bd_ops_t nvme_bd_ops = {
 483         .o_version      = BD_OPS_VERSION_0,
 484         .o_drive_info   = nvme_bd_driveinfo,
 485         .o_media_info   = nvme_bd_mediainfo,
 486         .o_devid_init   = nvme_bd_devid,
 487         .o_sync_cache   = nvme_bd_sync,
 488         .o_read         = nvme_bd_read,
 489         .o_write        = nvme_bd_write,
 490 };
 491 
 492 /*
 493  * This list will hold commands that have timed out and couldn't be aborted.
 494  * As we don't know what the hardware may still do with the DMA memory we can't
 495  * free them, so we'll keep them forever on this list where we can easily look
 496  * at them with mdb.
 497  */
 498 static struct list nvme_lost_cmds;
 499 static kmutex_t nvme_lc_mutex;
 500 
 501 int
 502 _init(void)
 503 {
 504         int error;
 505 
 506         error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
 507         if (error != DDI_SUCCESS)
 508                 return (error);
 509 
 510         nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
 511             sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
 512 
 513         mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
 514         list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
 515             offsetof(nvme_cmd_t, nc_list));
 516 
 517         bd_mod_init(&nvme_dev_ops);
 518 
 519         error = mod_install(&nvme_modlinkage);
 520         if (error != DDI_SUCCESS) {
 521                 ddi_soft_state_fini(&nvme_state);
 522                 mutex_destroy(&nvme_lc_mutex);
 523                 list_destroy(&nvme_lost_cmds);
 524                 bd_mod_fini(&nvme_dev_ops);
 525         }
 526 
 527         return (error);
 528 }
 529 
 530 int
 531 _fini(void)
 532 {
 533         int error;
 534 
 535         if (!list_is_empty(&nvme_lost_cmds))
 536                 return (DDI_FAILURE);
 537 
 538         error = mod_remove(&nvme_modlinkage);
 539         if (error == DDI_SUCCESS) {
 540                 ddi_soft_state_fini(&nvme_state);
 541                 kmem_cache_destroy(nvme_cmd_cache);
 542                 mutex_destroy(&nvme_lc_mutex);
 543                 list_destroy(&nvme_lost_cmds);
 544                 bd_mod_fini(&nvme_dev_ops);
 545         }
 546 
 547         return (error);
 548 }
 549 
 550 int
 551 _info(struct modinfo *modinfop)
 552 {
 553         return (mod_info(&nvme_modlinkage, modinfop));
 554 }
 555 
 556 static inline void
 557 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
 558 {
 559         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 560 
 561         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 562         ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
 563 }
 564 
 565 static inline void
 566 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
 567 {
 568         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 569 
 570         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 571         ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
 572 }
 573 
 574 static inline uint64_t
 575 nvme_get64(nvme_t *nvme, uintptr_t reg)
 576 {
 577         uint64_t val;
 578 
 579         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 580 
 581         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 582         val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
 583 
 584         return (val);
 585 }
 586 
 587 static inline uint32_t
 588 nvme_get32(nvme_t *nvme, uintptr_t reg)
 589 {
 590         uint32_t val;
 591 
 592         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 593 
 594         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 595         val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
 596 
 597         return (val);
 598 }
 599 
 600 static boolean_t
 601 nvme_check_regs_hdl(nvme_t *nvme)
 602 {
 603         ddi_fm_error_t error;
 604 
 605         ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
 606 
 607         if (error.fme_status != DDI_FM_OK)
 608                 return (B_TRUE);
 609 
 610         return (B_FALSE);
 611 }
 612 
 613 static boolean_t
 614 nvme_check_dma_hdl(nvme_dma_t *dma)
 615 {
 616         ddi_fm_error_t error;
 617 
 618         if (dma == NULL)
 619                 return (B_FALSE);
 620 
 621         ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
 622 
 623         if (error.fme_status != DDI_FM_OK)
 624                 return (B_TRUE);
 625 
 626         return (B_FALSE);
 627 }
 628 
 629 static void
 630 nvme_free_dma_common(nvme_dma_t *dma)
 631 {
 632         if (dma->nd_dmah != NULL)
 633                 (void) ddi_dma_unbind_handle(dma->nd_dmah);
 634         if (dma->nd_acch != NULL)
 635                 ddi_dma_mem_free(&dma->nd_acch);
 636         if (dma->nd_dmah != NULL)
 637                 ddi_dma_free_handle(&dma->nd_dmah);
 638 }
 639 
 640 static void
 641 nvme_free_dma(nvme_dma_t *dma)
 642 {
 643         nvme_free_dma_common(dma);
 644         kmem_free(dma, sizeof (*dma));
 645 }
 646 
 647 /* ARGSUSED */
 648 static void
 649 nvme_prp_dma_destructor(void *buf, void *private)
 650 {
 651         nvme_dma_t *dma = (nvme_dma_t *)buf;
 652 
 653         nvme_free_dma_common(dma);
 654 }
 655 
 656 static int
 657 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
 658     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
 659 {
 660         if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
 661             &dma->nd_dmah) != DDI_SUCCESS) {
 662                 /*
 663                  * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
 664                  * the only other possible error is DDI_DMA_BADATTR which
 665                  * indicates a driver bug which should cause a panic.
 666                  */
 667                 dev_err(nvme->n_dip, CE_PANIC,
 668                     "!failed to get DMA handle, check DMA attributes");
 669                 return (DDI_FAILURE);
 670         }
 671 
 672         /*
 673          * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
 674          * or the flags are conflicting, which isn't the case here.
 675          */
 676         (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
 677             DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
 678             &dma->nd_len, &dma->nd_acch);
 679 
 680         if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
 681             dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
 682             &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
 683                 dev_err(nvme->n_dip, CE_WARN,
 684                     "!failed to bind DMA memory");
 685                 atomic_inc_32(&nvme->n_dma_bind_err);
 686                 nvme_free_dma_common(dma);
 687                 return (DDI_FAILURE);
 688         }
 689 
 690         return (DDI_SUCCESS);
 691 }
 692 
 693 static int
 694 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
 695     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
 696 {
 697         nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
 698 
 699         if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
 700             DDI_SUCCESS) {
 701                 *ret = NULL;
 702                 kmem_free(dma, sizeof (nvme_dma_t));
 703                 return (DDI_FAILURE);
 704         }
 705 
 706         bzero(dma->nd_memp, dma->nd_len);
 707 
 708         *ret = dma;
 709         return (DDI_SUCCESS);
 710 }
 711 
 712 /* ARGSUSED */
 713 static int
 714 nvme_prp_dma_constructor(void *buf, void *private, int flags)
 715 {
 716         nvme_dma_t *dma = (nvme_dma_t *)buf;
 717         nvme_t *nvme = (nvme_t *)private;
 718 
 719         dma->nd_dmah = NULL;
 720         dma->nd_acch = NULL;
 721 
 722         if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
 723             DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
 724                 return (-1);
 725         }
 726 
 727         ASSERT(dma->nd_ncookie == 1);
 728 
 729         dma->nd_cached = B_TRUE;
 730 
 731         return (0);
 732 }
 733 
 734 static int
 735 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
 736     uint_t flags, nvme_dma_t **dma)
 737 {
 738         uint32_t len = nentry * qe_len;
 739         ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
 740 
 741         len = roundup(len, nvme->n_pagesize);
 742 
 743         q_dma_attr.dma_attr_minxfer = len;
 744 
 745         if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
 746             != DDI_SUCCESS) {
 747                 dev_err(nvme->n_dip, CE_WARN,
 748                     "!failed to get DMA memory for queue");
 749                 goto fail;
 750         }
 751 
 752         if ((*dma)->nd_ncookie != 1) {
 753                 dev_err(nvme->n_dip, CE_WARN,
 754                     "!got too many cookies for queue DMA");
 755                 goto fail;
 756         }
 757 
 758         return (DDI_SUCCESS);
 759 
 760 fail:
 761         if (*dma) {
 762                 nvme_free_dma(*dma);
 763                 *dma = NULL;
 764         }
 765 
 766         return (DDI_FAILURE);
 767 }
 768 
 769 static void
 770 nvme_free_qpair(nvme_qpair_t *qp)
 771 {
 772         int i;
 773 
 774         mutex_destroy(&qp->nq_mutex);
 775         sema_destroy(&qp->nq_sema);
 776 
 777         if (qp->nq_sqdma != NULL)
 778                 nvme_free_dma(qp->nq_sqdma);
 779         if (qp->nq_cqdma != NULL)
 780                 nvme_free_dma(qp->nq_cqdma);
 781 
 782         if (qp->nq_active_cmds > 0)
 783                 for (i = 0; i != qp->nq_nentry; i++)
 784                         if (qp->nq_cmd[i] != NULL)
 785                                 nvme_free_cmd(qp->nq_cmd[i]);
 786 
 787         if (qp->nq_cmd != NULL)
 788                 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
 789 
 790         kmem_free(qp, sizeof (nvme_qpair_t));
 791 }
 792 
 793 static int
 794 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
 795     int idx)
 796 {
 797         nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
 798 
 799         mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
 800             DDI_INTR_PRI(nvme->n_intr_pri));
 801         sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
 802 
 803         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
 804             DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
 805                 goto fail;
 806 
 807         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
 808             DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
 809                 goto fail;
 810 
 811         qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
 812         qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
 813         qp->nq_nentry = nentry;
 814 
 815         qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
 816         qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
 817 
 818         qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
 819         qp->nq_next_cmd = 0;
 820 
 821         *nqp = qp;
 822         return (DDI_SUCCESS);
 823 
 824 fail:
 825         nvme_free_qpair(qp);
 826         *nqp = NULL;
 827 
 828         return (DDI_FAILURE);
 829 }
 830 
 831 static nvme_cmd_t *
 832 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
 833 {
 834         nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
 835 
 836         if (cmd == NULL)
 837                 return (cmd);
 838 
 839         bzero(cmd, sizeof (nvme_cmd_t));
 840 
 841         cmd->nc_nvme = nvme;
 842 
 843         mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
 844             DDI_INTR_PRI(nvme->n_intr_pri));
 845         cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
 846 
 847         return (cmd);
 848 }
 849 
 850 static void
 851 nvme_free_cmd(nvme_cmd_t *cmd)
 852 {
 853         /* Don't free commands on the lost commands list. */
 854         if (list_link_active(&cmd->nc_list))
 855                 return;
 856 
 857         if (cmd->nc_dma) {
 858                 if (cmd->nc_dma->nd_cached)
 859                         kmem_cache_free(cmd->nc_nvme->n_prp_cache,
 860                             cmd->nc_dma);
 861                 else
 862                         nvme_free_dma(cmd->nc_dma);
 863                 cmd->nc_dma = NULL;
 864         }
 865 
 866         cv_destroy(&cmd->nc_cv);
 867         mutex_destroy(&cmd->nc_mutex);
 868 
 869         kmem_cache_free(nvme_cmd_cache, cmd);
 870 }
 871 
 872 static void
 873 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 874 {
 875         sema_p(&qp->nq_sema);
 876         nvme_submit_cmd_common(qp, cmd);
 877 }
 878 
 879 static int
 880 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 881 {
 882         if (sema_tryp(&qp->nq_sema) == 0)
 883                 return (EAGAIN);
 884 
 885         nvme_submit_cmd_common(qp, cmd);
 886         return (0);
 887 }
 888 
 889 static void
 890 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 891 {
 892         nvme_reg_sqtdbl_t tail = { 0 };
 893 
 894         mutex_enter(&qp->nq_mutex);
 895         cmd->nc_completed = B_FALSE;
 896 
 897         /*
 898          * Try to insert the cmd into the active cmd array at the nq_next_cmd
 899          * slot. If the slot is already occupied advance to the next slot and
 900          * try again. This can happen for long running commands like async event
 901          * requests.
 902          */
 903         while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
 904                 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 905         qp->nq_cmd[qp->nq_next_cmd] = cmd;
 906 
 907         qp->nq_active_cmds++;
 908 
 909         cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
 910         bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
 911         (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
 912             sizeof (nvme_sqe_t) * qp->nq_sqtail,
 913             sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
 914         qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 915 
 916         tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
 917         nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
 918 
 919         mutex_exit(&qp->nq_mutex);
 920 }
 921 
 922 static nvme_cmd_t *
 923 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
 924 {
 925         nvme_cmd_t *cmd;
 926 
 927         ASSERT(mutex_owned(&qp->nq_mutex));
 928         ASSERT3S(cid, <, qp->nq_nentry);
 929 
 930         cmd = qp->nq_cmd[cid];
 931         qp->nq_cmd[cid] = NULL;
 932         ASSERT3U(qp->nq_active_cmds, >, 0);
 933         qp->nq_active_cmds--;
 934         sema_v(&qp->nq_sema);
 935 
 936         ASSERT3P(cmd, !=, NULL);
 937         ASSERT3P(cmd->nc_nvme, ==, nvme);
 938         ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
 939 
 940         return (cmd);
 941 }
 942 
 943 static nvme_cmd_t *
 944 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
 945 {
 946         nvme_reg_cqhdbl_t head = { 0 };
 947 
 948         nvme_cqe_t *cqe;
 949         nvme_cmd_t *cmd;
 950 
 951         (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
 952             sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
 953 
 954         mutex_enter(&qp->nq_mutex);
 955         cqe = &qp->nq_cq[qp->nq_cqhead];
 956 
 957         /* Check phase tag of CQE. Hardware inverts it for new entries. */
 958         if (cqe->cqe_sf.sf_p == qp->nq_phase) {
 959                 mutex_exit(&qp->nq_mutex);
 960                 return (NULL);
 961         }
 962 
 963         ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
 964 
 965         cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
 966 
 967         ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
 968         bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
 969 
 970         qp->nq_sqhead = cqe->cqe_sqhd;
 971 
 972         head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
 973 
 974         /* Toggle phase on wrap-around. */
 975         if (qp->nq_cqhead == 0)
 976                 qp->nq_phase = qp->nq_phase ? 0 : 1;
 977 
 978         nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
 979         mutex_exit(&qp->nq_mutex);
 980 
 981         return (cmd);
 982 }
 983 
 984 static int
 985 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
 986 {
 987         nvme_cqe_t *cqe = &cmd->nc_cqe;
 988 
 989         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 990             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 991             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 992             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 993             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 994 
 995         if (cmd->nc_xfer != NULL)
 996                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 997 
 998         if (cmd->nc_nvme->n_strict_version) {
 999                 cmd->nc_nvme->n_dead = B_TRUE;
1000                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1001         }
1002 
1003         return (EIO);
1004 }
1005 
1006 static int
1007 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1008 {
1009         nvme_cqe_t *cqe = &cmd->nc_cqe;
1010 
1011         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1016         if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1017                 cmd->nc_nvme->n_dead = B_TRUE;
1018                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1019         }
1020 
1021         return (EIO);
1022 }
1023 
1024 static int
1025 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1026 {
1027         nvme_cqe_t *cqe = &cmd->nc_cqe;
1028 
1029         switch (cqe->cqe_sf.sf_sc) {
1030         case NVME_CQE_SC_INT_NVM_WRITE:
1031                 /* write fail */
1032                 /* TODO: post ereport */
1033                 if (cmd->nc_xfer != NULL)
1034                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1035                 return (EIO);
1036 
1037         case NVME_CQE_SC_INT_NVM_READ:
1038                 /* read fail */
1039                 /* TODO: post ereport */
1040                 if (cmd->nc_xfer != NULL)
1041                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1042                 return (EIO);
1043 
1044         default:
1045                 return (nvme_check_unknown_cmd_status(cmd));
1046         }
1047 }
1048 
1049 static int
1050 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1051 {
1052         nvme_cqe_t *cqe = &cmd->nc_cqe;
1053 
1054         switch (cqe->cqe_sf.sf_sc) {
1055         case NVME_CQE_SC_GEN_SUCCESS:
1056                 return (0);
1057 
1058         /*
1059          * Errors indicating a bug in the driver should cause a panic.
1060          */
1061         case NVME_CQE_SC_GEN_INV_OPC:
1062                 /* Invalid Command Opcode */
1063                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1064                     "invalid opcode in cmd %p", (void *)cmd);
1065                 return (0);
1066 
1067         case NVME_CQE_SC_GEN_INV_FLD:
1068                 /* Invalid Field in Command */
1069                 if (!cmd->nc_dontpanic)
1070                         dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1071                             "programming error: invalid field in cmd %p",
1072                             (void *)cmd);
1073                 return (EIO);
1074 
1075         case NVME_CQE_SC_GEN_ID_CNFL:
1076                 /* Command ID Conflict */
1077                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1078                     "cmd ID conflict in cmd %p", (void *)cmd);
1079                 return (0);
1080 
1081         case NVME_CQE_SC_GEN_INV_NS:
1082                 /* Invalid Namespace or Format */
1083                 if (!cmd->nc_dontpanic)
1084                         dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1085                             "programming error: " "invalid NS/format in cmd %p",
1086                             (void *)cmd);
1087                 return (EINVAL);
1088 
1089         case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1090                 /* LBA Out Of Range */
1091                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1092                     "LBA out of range in cmd %p", (void *)cmd);
1093                 return (0);
1094 
1095         /*
1096          * Non-fatal errors, handle gracefully.
1097          */
1098         case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1099                 /* Data Transfer Error (DMA) */
1100                 /* TODO: post ereport */
1101                 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1102                 if (cmd->nc_xfer != NULL)
1103                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1104                 return (EIO);
1105 
1106         case NVME_CQE_SC_GEN_INTERNAL_ERR:
1107                 /*
1108                  * Internal Error. The spec (v1.0, section 4.5.1.2) says
1109                  * detailed error information is returned as async event,
1110                  * so we pretty much ignore the error here and handle it
1111                  * in the async event handler.
1112                  */
1113                 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1114                 if (cmd->nc_xfer != NULL)
1115                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1116                 return (EIO);
1117 
1118         case NVME_CQE_SC_GEN_ABORT_REQUEST:
1119                 /*
1120                  * Command Abort Requested. This normally happens only when a
1121                  * command times out.
1122                  */
1123                 /* TODO: post ereport or change blkdev to handle this? */
1124                 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1125                 return (ECANCELED);
1126 
1127         case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1128                 /* Command Aborted due to Power Loss Notification */
1129                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1130                 cmd->nc_nvme->n_dead = B_TRUE;
1131                 return (EIO);
1132 
1133         case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1134                 /* Command Aborted due to SQ Deletion */
1135                 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1136                 return (EIO);
1137 
1138         case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1139                 /* Capacity Exceeded */
1140                 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1141                 if (cmd->nc_xfer != NULL)
1142                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1143                 return (EIO);
1144 
1145         case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1146                 /* Namespace Not Ready */
1147                 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1148                 if (cmd->nc_xfer != NULL)
1149                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1150                 return (EIO);
1151 
1152         default:
1153                 return (nvme_check_unknown_cmd_status(cmd));
1154         }
1155 }
1156 
1157 static int
1158 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1159 {
1160         nvme_cqe_t *cqe = &cmd->nc_cqe;
1161 
1162         switch (cqe->cqe_sf.sf_sc) {
1163         case NVME_CQE_SC_SPC_INV_CQ:
1164                 /* Completion Queue Invalid */
1165                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1166                 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1167                 return (EINVAL);
1168 
1169         case NVME_CQE_SC_SPC_INV_QID:
1170                 /* Invalid Queue Identifier */
1171                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1172                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1173                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1174                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1175                 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1176                 return (EINVAL);
1177 
1178         case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1179                 /* Max Queue Size Exceeded */
1180                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1181                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1182                 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1183                 return (EINVAL);
1184 
1185         case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1186                 /* Abort Command Limit Exceeded */
1187                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1188                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1189                     "abort command limit exceeded in cmd %p", (void *)cmd);
1190                 return (0);
1191 
1192         case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1193                 /* Async Event Request Limit Exceeded */
1194                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1195                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1196                     "async event request limit exceeded in cmd %p",
1197                     (void *)cmd);
1198                 return (0);
1199 
1200         case NVME_CQE_SC_SPC_INV_INT_VECT:
1201                 /* Invalid Interrupt Vector */
1202                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1203                 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1204                 return (EINVAL);
1205 
1206         case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1207                 /* Invalid Log Page */
1208                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1209                 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1210                 return (EINVAL);
1211 
1212         case NVME_CQE_SC_SPC_INV_FORMAT:
1213                 /* Invalid Format */
1214                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1215                 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1216                 if (cmd->nc_xfer != NULL)
1217                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1218                 return (EINVAL);
1219 
1220         case NVME_CQE_SC_SPC_INV_Q_DEL:
1221                 /* Invalid Queue Deletion */
1222                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1223                 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1224                 return (EINVAL);
1225 
1226         case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1227                 /* Conflicting Attributes */
1228                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1229                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1230                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1231                 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1232                 if (cmd->nc_xfer != NULL)
1233                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1234                 return (EINVAL);
1235 
1236         case NVME_CQE_SC_SPC_NVM_INV_PROT:
1237                 /* Invalid Protection Information */
1238                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1239                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1240                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1241                 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1242                 if (cmd->nc_xfer != NULL)
1243                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1244                 return (EINVAL);
1245 
1246         case NVME_CQE_SC_SPC_NVM_READONLY:
1247                 /* Write to Read Only Range */
1248                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1249                 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1250                 if (cmd->nc_xfer != NULL)
1251                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1252                 return (EROFS);
1253 
1254         default:
1255                 return (nvme_check_unknown_cmd_status(cmd));
1256         }
1257 }
1258 
1259 static inline int
1260 nvme_check_cmd_status(nvme_cmd_t *cmd)
1261 {
1262         nvme_cqe_t *cqe = &cmd->nc_cqe;
1263 
1264         /*
1265          * Take a shortcut if the controller is dead, or if
1266          * command status indicates no error.
1267          */
1268         if (cmd->nc_nvme->n_dead)
1269                 return (EIO);
1270 
1271         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1272             cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1273                 return (0);
1274 
1275         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1276                 return (nvme_check_generic_cmd_status(cmd));
1277         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1278                 return (nvme_check_specific_cmd_status(cmd));
1279         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1280                 return (nvme_check_integrity_cmd_status(cmd));
1281         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1282                 return (nvme_check_vendor_cmd_status(cmd));
1283 
1284         return (nvme_check_unknown_cmd_status(cmd));
1285 }
1286 
1287 static int
1288 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1289 {
1290         nvme_t *nvme = abort_cmd->nc_nvme;
1291         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1292         nvme_abort_cmd_t ac = { 0 };
1293         int ret = 0;
1294 
1295         sema_p(&nvme->n_abort_sema);
1296 
1297         ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1298         ac.b.ac_sqid = abort_cmd->nc_sqid;
1299 
1300         cmd->nc_sqid = 0;
1301         cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1302         cmd->nc_callback = nvme_wakeup_cmd;
1303         cmd->nc_sqe.sqe_cdw10 = ac.r;
1304 
1305         /*
1306          * Send the ABORT to the hardware. The ABORT command will return _after_
1307          * the aborted command has completed (aborted or otherwise), but since
1308          * we still hold the aborted command's mutex its callback hasn't been
1309          * processed yet.
1310          */
1311         nvme_admin_cmd(cmd, sec);
1312         sema_v(&nvme->n_abort_sema);
1313 
1314         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1315                 dev_err(nvme->n_dip, CE_WARN,
1316                     "!ABORT failed with sct = %x, sc = %x",
1317                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1318                 atomic_inc_32(&nvme->n_abort_failed);
1319         } else {
1320                 dev_err(nvme->n_dip, CE_WARN,
1321                     "!ABORT of command %d/%d %ssuccessful",
1322                     abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1323                     cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1324                 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1325                         atomic_inc_32(&nvme->n_cmd_aborted);
1326         }
1327 
1328         nvme_free_cmd(cmd);
1329         return (ret);
1330 }
1331 
1332 /*
1333  * nvme_wait_cmd -- wait for command completion or timeout
1334  *
1335  * In case of a serious error or a timeout of the abort command the hardware
1336  * will be declared dead and FMA will be notified.
1337  */
1338 static void
1339 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1340 {
1341         clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1342         nvme_t *nvme = cmd->nc_nvme;
1343         nvme_reg_csts_t csts;
1344         nvme_qpair_t *qp;
1345 
1346         ASSERT(mutex_owned(&cmd->nc_mutex));
1347 
1348         while (!cmd->nc_completed) {
1349                 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1350                         break;
1351         }
1352 
1353         if (cmd->nc_completed)
1354                 return;
1355 
1356         /*
1357          * The command timed out.
1358          *
1359          * Check controller for fatal status, any errors associated with the
1360          * register or DMA handle, or for a double timeout (abort command timed
1361          * out). If necessary log a warning and call FMA.
1362          */
1363         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1364         dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1365             "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1366             cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1367         atomic_inc_32(&nvme->n_cmd_timeout);
1368 
1369         if (csts.b.csts_cfs ||
1370             nvme_check_regs_hdl(nvme) ||
1371             nvme_check_dma_hdl(cmd->nc_dma) ||
1372             cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1373                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1374                 nvme->n_dead = B_TRUE;
1375         } else if (nvme_abort_cmd(cmd, sec) == 0) {
1376                 /*
1377                  * If the abort succeeded the command should complete
1378                  * immediately with an appropriate status.
1379                  */
1380                 while (!cmd->nc_completed)
1381                         cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1382 
1383                 return;
1384         }
1385 
1386         qp = nvme->n_ioq[cmd->nc_sqid];
1387 
1388         mutex_enter(&qp->nq_mutex);
1389         (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1390         mutex_exit(&qp->nq_mutex);
1391 
1392         /*
1393          * As we don't know what the presumed dead hardware might still do with
1394          * the DMA memory, we'll put the command on the lost commands list if it
1395          * has any DMA memory.
1396          */
1397         if (cmd->nc_dma != NULL) {
1398                 mutex_enter(&nvme_lc_mutex);
1399                 list_insert_head(&nvme_lost_cmds, cmd);
1400                 mutex_exit(&nvme_lc_mutex);
1401         }
1402 }
1403 
1404 static void
1405 nvme_wakeup_cmd(void *arg)
1406 {
1407         nvme_cmd_t *cmd = arg;
1408 
1409         mutex_enter(&cmd->nc_mutex);
1410         cmd->nc_completed = B_TRUE;
1411         cv_signal(&cmd->nc_cv);
1412         mutex_exit(&cmd->nc_mutex);
1413 }
1414 
1415 static void
1416 nvme_async_event_task(void *arg)
1417 {
1418         nvme_cmd_t *cmd = arg;
1419         nvme_t *nvme = cmd->nc_nvme;
1420         nvme_error_log_entry_t *error_log = NULL;
1421         nvme_health_log_t *health_log = NULL;
1422         size_t logsize = 0;
1423         nvme_async_event_t event;
1424 
1425         /*
1426          * Check for errors associated with the async request itself. The only
1427          * command-specific error is "async event limit exceeded", which
1428          * indicates a programming error in the driver and causes a panic in
1429          * nvme_check_cmd_status().
1430          *
1431          * Other possible errors are various scenarios where the async request
1432          * was aborted, or internal errors in the device. Internal errors are
1433          * reported to FMA, the command aborts need no special handling here.
1434          */
1435         if (nvme_check_cmd_status(cmd) != 0) {
1436                 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1437                     "!async event request returned failure, sct = %x, "
1438                     "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1439                     cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1440                     cmd->nc_cqe.cqe_sf.sf_m);
1441 
1442                 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1443                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1444                         cmd->nc_nvme->n_dead = B_TRUE;
1445                         ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1446                             DDI_SERVICE_LOST);
1447                 }
1448                 nvme_free_cmd(cmd);
1449                 return;
1450         }
1451 
1452 
1453         event.r = cmd->nc_cqe.cqe_dw0;
1454 
1455         /* Clear CQE and re-submit the async request. */
1456         bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1457         nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1458 
1459         switch (event.b.ae_type) {
1460         case NVME_ASYNC_TYPE_ERROR:
1461                 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1462                         (void) nvme_get_logpage(nvme, (void **)&error_log,
1463                             &logsize, event.b.ae_logpage);
1464                 } else {
1465                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1466                             "async event reply: %d", event.b.ae_logpage);
1467                         atomic_inc_32(&nvme->n_wrong_logpage);
1468                 }
1469 
1470                 switch (event.b.ae_info) {
1471                 case NVME_ASYNC_ERROR_INV_SQ:
1472                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1473                             "invalid submission queue");
1474                         return;
1475 
1476                 case NVME_ASYNC_ERROR_INV_DBL:
1477                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1478                             "invalid doorbell write value");
1479                         return;
1480 
1481                 case NVME_ASYNC_ERROR_DIAGFAIL:
1482                         dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1483                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1484                         nvme->n_dead = B_TRUE;
1485                         atomic_inc_32(&nvme->n_diagfail_event);
1486                         break;
1487 
1488                 case NVME_ASYNC_ERROR_PERSISTENT:
1489                         dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1490                             "device error");
1491                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1492                         nvme->n_dead = B_TRUE;
1493                         atomic_inc_32(&nvme->n_persistent_event);
1494                         break;
1495 
1496                 case NVME_ASYNC_ERROR_TRANSIENT:
1497                         dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1498                             "device error");
1499                         /* TODO: send ereport */
1500                         atomic_inc_32(&nvme->n_transient_event);
1501                         break;
1502 
1503                 case NVME_ASYNC_ERROR_FW_LOAD:
1504                         dev_err(nvme->n_dip, CE_WARN,
1505                             "!firmware image load error");
1506                         atomic_inc_32(&nvme->n_fw_load_event);
1507                         break;
1508                 }
1509                 break;
1510 
1511         case NVME_ASYNC_TYPE_HEALTH:
1512                 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1513                         (void) nvme_get_logpage(nvme, (void **)&health_log,
1514                             &logsize, event.b.ae_logpage, -1);
1515                 } else {
1516                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1517                             "async event reply: %d", event.b.ae_logpage);
1518                         atomic_inc_32(&nvme->n_wrong_logpage);
1519                 }
1520 
1521                 switch (event.b.ae_info) {
1522                 case NVME_ASYNC_HEALTH_RELIABILITY:
1523                         dev_err(nvme->n_dip, CE_WARN,
1524                             "!device reliability compromised");
1525                         /* TODO: send ereport */
1526                         atomic_inc_32(&nvme->n_reliability_event);
1527                         break;
1528 
1529                 case NVME_ASYNC_HEALTH_TEMPERATURE:
1530                         dev_err(nvme->n_dip, CE_WARN,
1531                             "!temperature above threshold");
1532                         /* TODO: send ereport */
1533                         atomic_inc_32(&nvme->n_temperature_event);
1534                         break;
1535 
1536                 case NVME_ASYNC_HEALTH_SPARE:
1537                         dev_err(nvme->n_dip, CE_WARN,
1538                             "!spare space below threshold");
1539                         /* TODO: send ereport */
1540                         atomic_inc_32(&nvme->n_spare_event);
1541                         break;
1542                 }
1543                 break;
1544 
1545         case NVME_ASYNC_TYPE_VENDOR:
1546                 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1547                     "received, info = %x, logpage = %x", event.b.ae_info,
1548                     event.b.ae_logpage);
1549                 atomic_inc_32(&nvme->n_vendor_event);
1550                 break;
1551 
1552         default:
1553                 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1554                     "type = %x, info = %x, logpage = %x", event.b.ae_type,
1555                     event.b.ae_info, event.b.ae_logpage);
1556                 atomic_inc_32(&nvme->n_unknown_event);
1557                 break;
1558         }
1559 
1560         if (error_log)
1561                 kmem_free(error_log, logsize);
1562 
1563         if (health_log)
1564                 kmem_free(health_log, logsize);
1565 }
1566 
1567 static void
1568 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1569 {
1570         mutex_enter(&cmd->nc_mutex);
1571         nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1572         nvme_wait_cmd(cmd, sec);
1573         mutex_exit(&cmd->nc_mutex);
1574 }
1575 
1576 static void
1577 nvme_async_event(nvme_t *nvme)
1578 {
1579         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1580 
1581         cmd->nc_sqid = 0;
1582         cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1583         cmd->nc_callback = nvme_async_event_task;
1584 
1585         nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1586 }
1587 
1588 static int
1589 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1590     uint8_t pi, boolean_t pil, uint8_t ses)
1591 {
1592         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1593         nvme_format_nvm_t format_nvm = { 0 };
1594         int ret;
1595 
1596         format_nvm.b.fm_lbaf = lbaf & 0xf;
1597         format_nvm.b.fm_ms = ms ? 1 : 0;
1598         format_nvm.b.fm_pi = pi & 0x7;
1599         format_nvm.b.fm_pil = pil ? 1 : 0;
1600         format_nvm.b.fm_ses = ses & 0x7;
1601 
1602         cmd->nc_sqid = 0;
1603         cmd->nc_callback = nvme_wakeup_cmd;
1604         cmd->nc_sqe.sqe_nsid = nsid;
1605         cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1606         cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1607 
1608         /*
1609          * Some devices like Samsung SM951 don't allow formatting of all
1610          * namespaces in one command. Handle that gracefully.
1611          */
1612         if (nsid == (uint32_t)-1)
1613                 cmd->nc_dontpanic = B_TRUE;
1614 
1615         nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1616 
1617         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1618                 dev_err(nvme->n_dip, CE_WARN,
1619                     "!FORMAT failed with sct = %x, sc = %x",
1620                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1621         }
1622 
1623         nvme_free_cmd(cmd);
1624         return (ret);
1625 }
1626 
1627 static int
1628 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1629     ...)
1630 {
1631         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1632         nvme_getlogpage_t getlogpage = { 0 };
1633         va_list ap;
1634         int ret;
1635 
1636         va_start(ap, logpage);
1637 
1638         cmd->nc_sqid = 0;
1639         cmd->nc_callback = nvme_wakeup_cmd;
1640         cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1641 
1642         getlogpage.b.lp_lid = logpage;
1643 
1644         switch (logpage) {
1645         case NVME_LOGPAGE_ERROR:
1646                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1647                 /*
1648                  * The GET LOG PAGE command can use at most 2 pages to return
1649                  * data, PRP lists are not supported.
1650                  */
1651                 *bufsize = MIN(2 * nvme->n_pagesize,
1652                     nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1653                 break;
1654 
1655         case NVME_LOGPAGE_HEALTH:
1656                 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1657                 *bufsize = sizeof (nvme_health_log_t);
1658                 break;
1659 
1660         case NVME_LOGPAGE_FWSLOT:
1661                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1662                 *bufsize = sizeof (nvme_fwslot_log_t);
1663                 break;
1664 
1665         default:
1666                 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1667                     logpage);
1668                 atomic_inc_32(&nvme->n_unknown_logpage);
1669                 ret = EINVAL;
1670                 goto fail;
1671         }
1672 
1673         va_end(ap);
1674 
1675         getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1676 
1677         cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1678 
1679         if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1680             DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1681                 dev_err(nvme->n_dip, CE_WARN,
1682                     "!nvme_zalloc_dma failed for GET LOG PAGE");
1683                 ret = ENOMEM;
1684                 goto fail;
1685         }
1686 
1687         if (cmd->nc_dma->nd_ncookie > 2) {
1688                 dev_err(nvme->n_dip, CE_WARN,
1689                     "!too many DMA cookies for GET LOG PAGE");
1690                 atomic_inc_32(&nvme->n_too_many_cookies);
1691                 ret = ENOMEM;
1692                 goto fail;
1693         }
1694 
1695         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1696         if (cmd->nc_dma->nd_ncookie > 1) {
1697                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1698                     &cmd->nc_dma->nd_cookie);
1699                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1700                     cmd->nc_dma->nd_cookie.dmac_laddress;
1701         }
1702 
1703         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1704 
1705         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1706                 dev_err(nvme->n_dip, CE_WARN,
1707                     "!GET LOG PAGE failed with sct = %x, sc = %x",
1708                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1709                 goto fail;
1710         }
1711 
1712         *buf = kmem_alloc(*bufsize, KM_SLEEP);
1713         bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1714 
1715 fail:
1716         nvme_free_cmd(cmd);
1717 
1718         return (ret);
1719 }
1720 
1721 static int
1722 nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1723 {
1724         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1725         int ret;
1726 
1727         if (buf == NULL)
1728                 return (EINVAL);
1729 
1730         cmd->nc_sqid = 0;
1731         cmd->nc_callback = nvme_wakeup_cmd;
1732         cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1733         cmd->nc_sqe.sqe_nsid = nsid;
1734         cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1735 
1736         if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1737             &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1738                 dev_err(nvme->n_dip, CE_WARN,
1739                     "!nvme_zalloc_dma failed for IDENTIFY");
1740                 ret = ENOMEM;
1741                 goto fail;
1742         }
1743 
1744         if (cmd->nc_dma->nd_ncookie > 2) {
1745                 dev_err(nvme->n_dip, CE_WARN,
1746                     "!too many DMA cookies for IDENTIFY");
1747                 atomic_inc_32(&nvme->n_too_many_cookies);
1748                 ret = ENOMEM;
1749                 goto fail;
1750         }
1751 
1752         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1753         if (cmd->nc_dma->nd_ncookie > 1) {
1754                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1755                     &cmd->nc_dma->nd_cookie);
1756                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1757                     cmd->nc_dma->nd_cookie.dmac_laddress;
1758         }
1759 
1760         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1761 
1762         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1763                 dev_err(nvme->n_dip, CE_WARN,
1764                     "!IDENTIFY failed with sct = %x, sc = %x",
1765                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1766                 goto fail;
1767         }
1768 
1769         *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1770         bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1771 
1772 fail:
1773         nvme_free_cmd(cmd);
1774 
1775         return (ret);
1776 }
1777 
1778 static int
1779 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1780     uint32_t *res)
1781 {
1782         _NOTE(ARGUNUSED(nsid));
1783         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1784         int ret = EINVAL;
1785 
1786         ASSERT(res != NULL);
1787 
1788         cmd->nc_sqid = 0;
1789         cmd->nc_callback = nvme_wakeup_cmd;
1790         cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1791         cmd->nc_sqe.sqe_cdw10 = feature;
1792         cmd->nc_sqe.sqe_cdw11 = val;
1793 
1794         switch (feature) {
1795         case NVME_FEAT_WRITE_CACHE:
1796                 if (!nvme->n_write_cache_present)
1797                         goto fail;
1798                 break;
1799 
1800         case NVME_FEAT_NQUEUES:
1801                 break;
1802 
1803         default:
1804                 goto fail;
1805         }
1806 
1807         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1808 
1809         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1810                 dev_err(nvme->n_dip, CE_WARN,
1811                     "!SET FEATURES %d failed with sct = %x, sc = %x",
1812                     feature, cmd->nc_cqe.cqe_sf.sf_sct,
1813                     cmd->nc_cqe.cqe_sf.sf_sc);
1814                 goto fail;
1815         }
1816 
1817         *res = cmd->nc_cqe.cqe_dw0;
1818 
1819 fail:
1820         nvme_free_cmd(cmd);
1821         return (ret);
1822 }
1823 
1824 static int
1825 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1826     void **buf, size_t *bufsize)
1827 {
1828         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1829         int ret = EINVAL;
1830 
1831         ASSERT(res != NULL);
1832 
1833         if (bufsize != NULL)
1834                 *bufsize = 0;
1835 
1836         cmd->nc_sqid = 0;
1837         cmd->nc_callback = nvme_wakeup_cmd;
1838         cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1839         cmd->nc_sqe.sqe_cdw10 = feature;
1840         cmd->nc_sqe.sqe_cdw11 = *res;
1841 
1842         switch (feature) {
1843         case NVME_FEAT_ARBITRATION:
1844         case NVME_FEAT_POWER_MGMT:
1845         case NVME_FEAT_TEMPERATURE:
1846         case NVME_FEAT_ERROR:
1847         case NVME_FEAT_NQUEUES:
1848         case NVME_FEAT_INTR_COAL:
1849         case NVME_FEAT_INTR_VECT:
1850         case NVME_FEAT_WRITE_ATOM:
1851         case NVME_FEAT_ASYNC_EVENT:
1852         case NVME_FEAT_PROGRESS:
1853                 break;
1854 
1855         case NVME_FEAT_WRITE_CACHE:
1856                 if (!nvme->n_write_cache_present)
1857                         goto fail;
1858                 break;
1859 
1860         case NVME_FEAT_LBA_RANGE:
1861                 if (!nvme->n_lba_range_supported)
1862                         goto fail;
1863 
1864                 /*
1865                  * The LBA Range Type feature is optional. There doesn't seem
1866                  * be a method of detecting whether it is supported other than
1867                  * using it. This will cause a "invalid field in command" error,
1868                  * which is normally considered a programming error and causes
1869                  * panic in nvme_check_generic_cmd_status().
1870                  */
1871                 cmd->nc_dontpanic = B_TRUE;
1872                 cmd->nc_sqe.sqe_nsid = nsid;
1873                 ASSERT(bufsize != NULL);
1874                 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1875 
1876                 break;
1877 
1878         case NVME_FEAT_AUTO_PST:
1879                 if (!nvme->n_auto_pst_supported)
1880                         goto fail;
1881 
1882                 ASSERT(bufsize != NULL);
1883                 *bufsize = NVME_AUTO_PST_BUFSIZE;
1884                 break;
1885 
1886         default:
1887                 goto fail;
1888         }
1889 
1890         if (bufsize != NULL && *bufsize != 0) {
1891                 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1892                     &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1893                         dev_err(nvme->n_dip, CE_WARN,
1894                             "!nvme_zalloc_dma failed for GET FEATURES");
1895                         ret = ENOMEM;
1896                         goto fail;
1897                 }
1898 
1899                 if (cmd->nc_dma->nd_ncookie > 2) {
1900                         dev_err(nvme->n_dip, CE_WARN,
1901                             "!too many DMA cookies for GET FEATURES");
1902                         atomic_inc_32(&nvme->n_too_many_cookies);
1903                         ret = ENOMEM;
1904                         goto fail;
1905                 }
1906 
1907                 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1908                     cmd->nc_dma->nd_cookie.dmac_laddress;
1909                 if (cmd->nc_dma->nd_ncookie > 1) {
1910                         ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1911                             &cmd->nc_dma->nd_cookie);
1912                         cmd->nc_sqe.sqe_dptr.d_prp[1] =
1913                             cmd->nc_dma->nd_cookie.dmac_laddress;
1914                 }
1915         }
1916 
1917         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1918 
1919         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1920                 if (feature == NVME_FEAT_LBA_RANGE &&
1921                     cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1922                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1923                         nvme->n_lba_range_supported = B_FALSE;
1924                 else
1925                         dev_err(nvme->n_dip, CE_WARN,
1926                             "!GET FEATURES %d failed with sct = %x, sc = %x",
1927                             feature, cmd->nc_cqe.cqe_sf.sf_sct,
1928                             cmd->nc_cqe.cqe_sf.sf_sc);
1929                 goto fail;
1930         }
1931 
1932         if (bufsize != NULL && *bufsize != 0) {
1933                 ASSERT(buf != NULL);
1934                 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1935                 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1936         }
1937 
1938         *res = cmd->nc_cqe.cqe_dw0;
1939 
1940 fail:
1941         nvme_free_cmd(cmd);
1942         return (ret);
1943 }
1944 
1945 static int
1946 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1947 {
1948         nvme_write_cache_t nwc = { 0 };
1949 
1950         if (enable)
1951                 nwc.b.wc_wce = 1;
1952 
1953         return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
1954             &nwc.r));
1955 }
1956 
1957 static int
1958 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
1959 {
1960         nvme_nqueues_t nq = { 0 };
1961         int ret;
1962 
1963         nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
1964 
1965         ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
1966 
1967         if (ret == 0) {
1968                 /*
1969                  * Always use the same number of submission and completion
1970                  * queues, and never use more than the requested number of
1971                  * queues.
1972                  */
1973                 *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
1974         }
1975 
1976         return (ret);
1977 }
1978 
1979 static int
1980 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1981 {
1982         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1983         nvme_create_queue_dw10_t dw10 = { 0 };
1984         nvme_create_cq_dw11_t c_dw11 = { 0 };
1985         nvme_create_sq_dw11_t s_dw11 = { 0 };
1986         int ret;
1987 
1988         dw10.b.q_qid = idx;
1989         dw10.b.q_qsize = qp->nq_nentry - 1;
1990 
1991         c_dw11.b.cq_pc = 1;
1992         c_dw11.b.cq_ien = 1;
1993         c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1994 
1995         cmd->nc_sqid = 0;
1996         cmd->nc_callback = nvme_wakeup_cmd;
1997         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1998         cmd->nc_sqe.sqe_cdw10 = dw10.r;
1999         cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2000         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2001 
2002         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2003 
2004         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2005                 dev_err(nvme->n_dip, CE_WARN,
2006                     "!CREATE CQUEUE failed with sct = %x, sc = %x",
2007                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2008                 goto fail;
2009         }
2010 
2011         nvme_free_cmd(cmd);
2012 
2013         s_dw11.b.sq_pc = 1;
2014         s_dw11.b.sq_cqid = idx;
2015 
2016         cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2017         cmd->nc_sqid = 0;
2018         cmd->nc_callback = nvme_wakeup_cmd;
2019         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2020         cmd->nc_sqe.sqe_cdw10 = dw10.r;
2021         cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2022         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2023 
2024         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2025 
2026         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2027                 dev_err(nvme->n_dip, CE_WARN,
2028                     "!CREATE SQUEUE failed with sct = %x, sc = %x",
2029                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2030                 goto fail;
2031         }
2032 
2033 fail:
2034         nvme_free_cmd(cmd);
2035 
2036         return (ret);
2037 }
2038 
2039 static boolean_t
2040 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2041 {
2042         nvme_reg_csts_t csts;
2043         int i;
2044 
2045         nvme_put32(nvme, NVME_REG_CC, 0);
2046 
2047         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2048         if (csts.b.csts_rdy == 1) {
2049                 nvme_put32(nvme, NVME_REG_CC, 0);
2050                 for (i = 0; i != nvme->n_timeout * 10; i++) {
2051                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2052                         if (csts.b.csts_rdy == 0)
2053                                 break;
2054 
2055                         if (quiesce)
2056                                 drv_usecwait(50000);
2057                         else
2058                                 delay(drv_usectohz(50000));
2059                 }
2060         }
2061 
2062         nvme_put32(nvme, NVME_REG_AQA, 0);
2063         nvme_put32(nvme, NVME_REG_ASQ, 0);
2064         nvme_put32(nvme, NVME_REG_ACQ, 0);
2065 
2066         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2067         return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2068 }
2069 
2070 static void
2071 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2072 {
2073         nvme_reg_cc_t cc;
2074         nvme_reg_csts_t csts;
2075         int i;
2076 
2077         ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2078 
2079         cc.r = nvme_get32(nvme, NVME_REG_CC);
2080         cc.b.cc_shn = mode & 0x3;
2081         nvme_put32(nvme, NVME_REG_CC, cc.r);
2082 
2083         for (i = 0; i != 10; i++) {
2084                 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2085                 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2086                         break;
2087 
2088                 if (quiesce)
2089                         drv_usecwait(100000);
2090                 else
2091                         delay(drv_usectohz(100000));
2092         }
2093 }
2094 
2095 
2096 static void
2097 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2098 {
2099         /*
2100          * Section 7.7 of the spec describes how to get a unique ID for
2101          * the controller: the vendor ID, the model name and the serial
2102          * number shall be unique when combined.
2103          *
2104          * If a namespace has no EUI64 we use the above and add the hex
2105          * namespace ID to get a unique ID for the namespace.
2106          */
2107         char model[sizeof (nvme->n_idctl->id_model) + 1];
2108         char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2109 
2110         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2111         bcopy(nvme->n_idctl->id_serial, serial,
2112             sizeof (nvme->n_idctl->id_serial));
2113 
2114         model[sizeof (nvme->n_idctl->id_model)] = '\0';
2115         serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2116 
2117         nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2118             nvme->n_idctl->id_vid, model, serial, nsid);
2119 }
2120 
2121 static int
2122 nvme_init_ns(nvme_t *nvme, int nsid)
2123 {
2124         nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2125         nvme_identify_nsid_t *idns;
2126         int last_rp;
2127 
2128         ns->ns_nvme = nvme;
2129 
2130         if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2131                 dev_err(nvme->n_dip, CE_WARN,
2132                     "!failed to identify namespace %d", nsid);
2133                 return (DDI_FAILURE);
2134         }
2135 
2136         ns->ns_idns = idns;
2137         ns->ns_id = nsid;
2138         ns->ns_block_count = idns->id_nsize;
2139         ns->ns_block_size =
2140             1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2141         ns->ns_best_block_size = ns->ns_block_size;
2142 
2143         /*
2144          * Get the EUI64 if present. Use it for devid and device node names.
2145          */
2146         if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2147                 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2148 
2149         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2150         if (*(uint64_t *)ns->ns_eui64 != 0) {
2151                 uint8_t *eui64 = ns->ns_eui64;
2152 
2153                 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2154                     "%02x%02x%02x%02x%02x%02x%02x%02x",
2155                     eui64[0], eui64[1], eui64[2], eui64[3],
2156                     eui64[4], eui64[5], eui64[6], eui64[7]);
2157         } else {
2158                 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2159                     ns->ns_id);
2160 
2161                 nvme_prepare_devid(nvme, ns->ns_id);
2162         }
2163 
2164         /*
2165          * Find the LBA format with no metadata and the best relative
2166          * performance. A value of 3 means "degraded", 0 is best.
2167          */
2168         last_rp = 3;
2169         for (int j = 0; j <= idns->id_nlbaf; j++) {
2170                 if (idns->id_lbaf[j].lbaf_lbads == 0)
2171                         break;
2172                 if (idns->id_lbaf[j].lbaf_ms != 0)
2173                         continue;
2174                 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2175                         continue;
2176                 last_rp = idns->id_lbaf[j].lbaf_rp;
2177                 ns->ns_best_block_size =
2178                     1 << idns->id_lbaf[j].lbaf_lbads;
2179         }
2180 
2181         if (ns->ns_best_block_size < nvme->n_min_block_size)
2182                 ns->ns_best_block_size = nvme->n_min_block_size;
2183 
2184         /*
2185          * We currently don't support namespaces that use either:
2186          * - thin provisioning
2187          * - protection information
2188          * - illegal block size (< 512)
2189          */
2190         if (idns->id_nsfeat.f_thin ||
2191             idns->id_dps.dp_pinfo) {
2192                 dev_err(nvme->n_dip, CE_WARN,
2193                     "!ignoring namespace %d, unsupported features: "
2194                     "thin = %d, pinfo = %d", nsid,
2195                     idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2196                 ns->ns_ignore = B_TRUE;
2197         } else if (ns->ns_block_size < 512) {
2198                 dev_err(nvme->n_dip, CE_WARN,
2199                     "!ignoring namespace %d, unsupported block size %"PRIu64,
2200                     nsid, (uint64_t)ns->ns_block_size);
2201                 ns->ns_ignore = B_TRUE;
2202         } else {
2203                 ns->ns_ignore = B_FALSE;
2204         }
2205 
2206         return (DDI_SUCCESS);
2207 }
2208 
2209 static int
2210 nvme_init(nvme_t *nvme)
2211 {
2212         nvme_reg_cc_t cc = { 0 };
2213         nvme_reg_aqa_t aqa = { 0 };
2214         nvme_reg_asq_t asq = { 0 };
2215         nvme_reg_acq_t acq = { 0 };
2216         nvme_reg_cap_t cap;
2217         nvme_reg_vs_t vs;
2218         nvme_reg_csts_t csts;
2219         int i = 0;
2220         uint16_t nqueues;
2221         char model[sizeof (nvme->n_idctl->id_model) + 1];
2222         char *vendor, *product;
2223 
2224         /* Check controller version */
2225         vs.r = nvme_get32(nvme, NVME_REG_VS);
2226         nvme->n_version.v_major = vs.b.vs_mjr;
2227         nvme->n_version.v_minor = vs.b.vs_mnr;
2228         dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2229             nvme->n_version.v_major, nvme->n_version.v_minor);
2230 
2231         if (NVME_VERSION_HIGHER(&nvme->n_version,
2232             nvme_version_major, nvme_version_minor)) {
2233                 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2234                     nvme_version_major, nvme_version_minor);
2235                 if (nvme->n_strict_version)
2236                         goto fail;
2237         }
2238 
2239         /* retrieve controller configuration */
2240         cap.r = nvme_get64(nvme, NVME_REG_CAP);
2241 
2242         if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2243                 dev_err(nvme->n_dip, CE_WARN,
2244                     "!NVM command set not supported by hardware");
2245                 goto fail;
2246         }
2247 
2248         nvme->n_nssr_supported = cap.b.cap_nssrs;
2249         nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2250         nvme->n_timeout = cap.b.cap_to;
2251         nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2252         nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2253         nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2254 
2255         /*
2256          * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2257          * the base page size of 4k (1<<12), so add 12 here to get the real
2258          * page size value.
2259          */
2260         nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2261             cap.b.cap_mpsmax + 12);
2262         nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2263 
2264         /*
2265          * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2266          */
2267         nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2268         nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2269 
2270         /*
2271          * Set up PRP DMA to transfer 1 page-aligned page at a time.
2272          * Maxxfer may be increased after we identified the controller limits.
2273          */
2274         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2275         nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2276         nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2277         nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2278 
2279         /*
2280          * Reset controller if it's still in ready state.
2281          */
2282         if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2283                 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2284                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2285                 nvme->n_dead = B_TRUE;
2286                 goto fail;
2287         }
2288 
2289         /*
2290          * Create the admin queue pair.
2291          */
2292         if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2293             != DDI_SUCCESS) {
2294                 dev_err(nvme->n_dip, CE_WARN,
2295                     "!unable to allocate admin qpair");
2296                 goto fail;
2297         }
2298         nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2299         nvme->n_ioq[0] = nvme->n_adminq;
2300 
2301         nvme->n_progress |= NVME_ADMIN_QUEUE;
2302 
2303         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2304             "admin-queue-len", nvme->n_admin_queue_len);
2305 
2306         aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2307         asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2308         acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2309 
2310         ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2311         ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2312 
2313         nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2314         nvme_put64(nvme, NVME_REG_ASQ, asq);
2315         nvme_put64(nvme, NVME_REG_ACQ, acq);
2316 
2317         cc.b.cc_ams = 0;        /* use Round-Robin arbitration */
2318         cc.b.cc_css = 0;        /* use NVM command set */
2319         cc.b.cc_mps = nvme->n_pageshift - 12;
2320         cc.b.cc_shn = 0;        /* no shutdown in progress */
2321         cc.b.cc_en = 1;         /* enable controller */
2322         cc.b.cc_iosqes = 6;     /* submission queue entry is 2^6 bytes long */
2323         cc.b.cc_iocqes = 4;     /* completion queue entry is 2^4 bytes long */
2324 
2325         nvme_put32(nvme, NVME_REG_CC, cc.r);
2326 
2327         /*
2328          * Wait for the controller to become ready.
2329          */
2330         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2331         if (csts.b.csts_rdy == 0) {
2332                 for (i = 0; i != nvme->n_timeout * 10; i++) {
2333                         delay(drv_usectohz(50000));
2334                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2335 
2336                         if (csts.b.csts_cfs == 1) {
2337                                 dev_err(nvme->n_dip, CE_WARN,
2338                                     "!controller fatal status at init");
2339                                 ddi_fm_service_impact(nvme->n_dip,
2340                                     DDI_SERVICE_LOST);
2341                                 nvme->n_dead = B_TRUE;
2342                                 goto fail;
2343                         }
2344 
2345                         if (csts.b.csts_rdy == 1)
2346                                 break;
2347                 }
2348         }
2349 
2350         if (csts.b.csts_rdy == 0) {
2351                 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2352                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2353                 nvme->n_dead = B_TRUE;
2354                 goto fail;
2355         }
2356 
2357         /*
2358          * Assume an abort command limit of 1. We'll destroy and re-init
2359          * that later when we know the true abort command limit.
2360          */
2361         sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2362 
2363         /*
2364          * Setup initial interrupt for admin queue.
2365          */
2366         if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2367             != DDI_SUCCESS) &&
2368             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2369             != DDI_SUCCESS) &&
2370             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2371             != DDI_SUCCESS)) {
2372                 dev_err(nvme->n_dip, CE_WARN,
2373                     "!failed to setup initial interrupt");
2374                 goto fail;
2375         }
2376 
2377         /*
2378          * Post an asynchronous event command to catch errors.
2379          */
2380         nvme_async_event(nvme);
2381 
2382         /*
2383          * Identify Controller
2384          */
2385         if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2386                 dev_err(nvme->n_dip, CE_WARN,
2387                     "!failed to identify controller");
2388                 goto fail;
2389         }
2390 
2391         /*
2392          * Get Vendor & Product ID
2393          */
2394         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2395         model[sizeof (nvme->n_idctl->id_model)] = '\0';
2396         sata_split_model(model, &vendor, &product);
2397 
2398         if (vendor == NULL)
2399                 nvme->n_vendor = strdup("NVMe");
2400         else
2401                 nvme->n_vendor = strdup(vendor);
2402 
2403         nvme->n_product = strdup(product);
2404 
2405         /*
2406          * Get controller limits.
2407          */
2408         nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2409             MIN(nvme->n_admin_queue_len / 10,
2410             MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2411 
2412         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2413             "async-event-limit", nvme->n_async_event_limit);
2414 
2415         nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2416 
2417         /*
2418          * Reinitialize the semaphore with the true abort command limit
2419          * supported by the hardware. It's not necessary to disable interrupts
2420          * as only command aborts use the semaphore, and no commands are
2421          * executed or aborted while we're here.
2422          */
2423         sema_destroy(&nvme->n_abort_sema);
2424         sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2425             SEMA_DRIVER, NULL);
2426 
2427         nvme->n_progress |= NVME_CTRL_LIMITS;
2428 
2429         if (nvme->n_idctl->id_mdts == 0)
2430                 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2431         else
2432                 nvme->n_max_data_transfer_size =
2433                     1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2434 
2435         nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2436 
2437         /*
2438          * Limit n_max_data_transfer_size to what we can handle in one PRP.
2439          * Chained PRPs are currently unsupported.
2440          *
2441          * This is a no-op on hardware which doesn't support a transfer size
2442          * big enough to require chained PRPs.
2443          */
2444         nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2445             (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2446 
2447         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2448 
2449         /*
2450          * Make sure the minimum/maximum queue entry sizes are not
2451          * larger/smaller than the default.
2452          */
2453 
2454         if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2455             ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2456             ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2457             ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2458                 goto fail;
2459 
2460         /*
2461          * Check for the presence of a Volatile Write Cache. If present,
2462          * enable or disable based on the value of the property
2463          * volatile-write-cache-enable (default is enabled).
2464          */
2465         nvme->n_write_cache_present =
2466             nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2467 
2468         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2469             "volatile-write-cache-present",
2470             nvme->n_write_cache_present ? 1 : 0);
2471 
2472         if (!nvme->n_write_cache_present) {
2473                 nvme->n_write_cache_enabled = B_FALSE;
2474         } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2475             != 0) {
2476                 dev_err(nvme->n_dip, CE_WARN,
2477                     "!failed to %sable volatile write cache",
2478                     nvme->n_write_cache_enabled ? "en" : "dis");
2479                 /*
2480                  * Assume the cache is (still) enabled.
2481                  */
2482                 nvme->n_write_cache_enabled = B_TRUE;
2483         }
2484 
2485         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2486             "volatile-write-cache-enable",
2487             nvme->n_write_cache_enabled ? 1 : 0);
2488 
2489         /*
2490          * Assume LBA Range Type feature is supported. If it isn't this
2491          * will be set to B_FALSE by nvme_get_features().
2492          */
2493         nvme->n_lba_range_supported = B_TRUE;
2494 
2495         /*
2496          * Check support for Autonomous Power State Transition.
2497          */
2498         if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2499                 nvme->n_auto_pst_supported =
2500                     nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2501 
2502         /*
2503          * Identify Namespaces
2504          */
2505         nvme->n_namespace_count = nvme->n_idctl->id_nn;
2506         if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2507                 dev_err(nvme->n_dip, CE_WARN,
2508                     "!too many namespaces: %d, limiting to %d\n",
2509                     nvme->n_namespace_count, NVME_MINOR_MAX);
2510                 nvme->n_namespace_count = NVME_MINOR_MAX;
2511         }
2512 
2513         nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2514             nvme->n_namespace_count, KM_SLEEP);
2515 
2516         for (i = 0; i != nvme->n_namespace_count; i++) {
2517                 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2518                     NULL);
2519                 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2520                         goto fail;
2521         }
2522 
2523         /*
2524          * Try to set up MSI/MSI-X interrupts.
2525          */
2526         if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2527             != 0) {
2528                 nvme_release_interrupts(nvme);
2529 
2530                 nqueues = MIN(UINT16_MAX, ncpus);
2531 
2532                 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2533                     nqueues) != DDI_SUCCESS) &&
2534                     (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2535                     nqueues) != DDI_SUCCESS)) {
2536                         dev_err(nvme->n_dip, CE_WARN,
2537                             "!failed to setup MSI/MSI-X interrupts");
2538                         goto fail;
2539                 }
2540         }
2541 
2542         nqueues = nvme->n_intr_cnt;
2543 
2544         /*
2545          * Create I/O queue pairs.
2546          */
2547 
2548         if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2549                 dev_err(nvme->n_dip, CE_WARN,
2550                     "!failed to set number of I/O queues to %d",
2551                     nvme->n_intr_cnt);
2552                 goto fail;
2553         }
2554 
2555         /*
2556          * Reallocate I/O queue array
2557          */
2558         kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2559         nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2560             (nqueues + 1), KM_SLEEP);
2561         nvme->n_ioq[0] = nvme->n_adminq;
2562 
2563         nvme->n_ioq_count = nqueues;
2564 
2565         /*
2566          * If we got less queues than we asked for we might as well give
2567          * some of the interrupt vectors back to the system.
2568          */
2569         if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2570                 nvme_release_interrupts(nvme);
2571 
2572                 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2573                     nvme->n_ioq_count) != DDI_SUCCESS) {
2574                         dev_err(nvme->n_dip, CE_WARN,
2575                             "!failed to reduce number of interrupts");
2576                         goto fail;
2577                 }
2578         }
2579 
2580         /*
2581          * Alloc & register I/O queue pairs
2582          */
2583         nvme->n_io_queue_len =
2584             MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2585         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2586             nvme->n_io_queue_len);
2587 
2588         for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2589                 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2590                     &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2591                         dev_err(nvme->n_dip, CE_WARN,
2592                             "!unable to allocate I/O qpair %d", i);
2593                         goto fail;
2594                 }
2595 
2596                 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2597                         dev_err(nvme->n_dip, CE_WARN,
2598                             "!unable to create I/O qpair %d", i);
2599                         goto fail;
2600                 }
2601         }
2602 
2603         /*
2604          * Post more asynchronous events commands to reduce event reporting
2605          * latency as suggested by the spec.
2606          */
2607         for (i = 1; i != nvme->n_async_event_limit; i++)
2608                 nvme_async_event(nvme);
2609 
2610         return (DDI_SUCCESS);
2611 
2612 fail:
2613         (void) nvme_reset(nvme, B_FALSE);
2614         return (DDI_FAILURE);
2615 }
2616 
2617 static uint_t
2618 nvme_intr(caddr_t arg1, caddr_t arg2)
2619 {
2620         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2621         nvme_t *nvme = (nvme_t *)arg1;
2622         int inum = (int)(uintptr_t)arg2;
2623         int ccnt = 0;
2624         int qnum;
2625         nvme_cmd_t *cmd;
2626 
2627         if (inum >= nvme->n_intr_cnt)
2628                 return (DDI_INTR_UNCLAIMED);
2629 
2630         if (nvme->n_dead)
2631                 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2632                     DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2633 
2634         /*
2635          * The interrupt vector a queue uses is calculated as queue_idx %
2636          * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2637          * in steps of n_intr_cnt to process all queues using this vector.
2638          */
2639         for (qnum = inum;
2640             qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2641             qnum += nvme->n_intr_cnt) {
2642                 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2643                         taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2644                             cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2645                         ccnt++;
2646                 }
2647         }
2648 
2649         return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2650 }
2651 
2652 static void
2653 nvme_release_interrupts(nvme_t *nvme)
2654 {
2655         int i;
2656 
2657         for (i = 0; i < nvme->n_intr_cnt; i++) {
2658                 if (nvme->n_inth[i] == NULL)
2659                         break;
2660 
2661                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2662                         (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2663                 else
2664                         (void) ddi_intr_disable(nvme->n_inth[i]);
2665 
2666                 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2667                 (void) ddi_intr_free(nvme->n_inth[i]);
2668         }
2669 
2670         kmem_free(nvme->n_inth, nvme->n_inth_sz);
2671         nvme->n_inth = NULL;
2672         nvme->n_inth_sz = 0;
2673 
2674         nvme->n_progress &= ~NVME_INTERRUPTS;
2675 }
2676 
2677 static int
2678 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2679 {
2680         int nintrs, navail, count;
2681         int ret;
2682         int i;
2683 
2684         if (nvme->n_intr_types == 0) {
2685                 ret = ddi_intr_get_supported_types(nvme->n_dip,
2686                     &nvme->n_intr_types);
2687                 if (ret != DDI_SUCCESS) {
2688                         dev_err(nvme->n_dip, CE_WARN,
2689                             "!%s: ddi_intr_get_supported types failed",
2690                             __func__);
2691                         return (ret);
2692                 }
2693 #ifdef __x86
2694                 if (get_hwenv() == HW_VMWARE)
2695                         nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2696 #endif
2697         }
2698 
2699         if ((nvme->n_intr_types & intr_type) == 0)
2700                 return (DDI_FAILURE);
2701 
2702         ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2703         if (ret != DDI_SUCCESS) {
2704                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2705                     __func__);
2706                 return (ret);
2707         }
2708 
2709         ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2710         if (ret != DDI_SUCCESS) {
2711                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2712                     __func__);
2713                 return (ret);
2714         }
2715 
2716         /* We want at most one interrupt per queue pair. */
2717         if (navail > nqpairs)
2718                 navail = nqpairs;
2719 
2720         nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2721         nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2722 
2723         ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2724             &count, 0);
2725         if (ret != DDI_SUCCESS) {
2726                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2727                     __func__);
2728                 goto fail;
2729         }
2730 
2731         nvme->n_intr_cnt = count;
2732 
2733         ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2734         if (ret != DDI_SUCCESS) {
2735                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2736                     __func__);
2737                 goto fail;
2738         }
2739 
2740         for (i = 0; i < count; i++) {
2741                 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2742                     (void *)nvme, (void *)(uintptr_t)i);
2743                 if (ret != DDI_SUCCESS) {
2744                         dev_err(nvme->n_dip, CE_WARN,
2745                             "!%s: ddi_intr_add_handler failed", __func__);
2746                         goto fail;
2747                 }
2748         }
2749 
2750         (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2751 
2752         for (i = 0; i < count; i++) {
2753                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2754                         ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2755                 else
2756                         ret = ddi_intr_enable(nvme->n_inth[i]);
2757 
2758                 if (ret != DDI_SUCCESS) {
2759                         dev_err(nvme->n_dip, CE_WARN,
2760                             "!%s: enabling interrupt %d failed", __func__, i);
2761                         goto fail;
2762                 }
2763         }
2764 
2765         nvme->n_intr_type = intr_type;
2766 
2767         nvme->n_progress |= NVME_INTERRUPTS;
2768 
2769         return (DDI_SUCCESS);
2770 
2771 fail:
2772         nvme_release_interrupts(nvme);
2773 
2774         return (ret);
2775 }
2776 
2777 static int
2778 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2779 {
2780         _NOTE(ARGUNUSED(arg));
2781 
2782         pci_ereport_post(dip, fm_error, NULL);
2783         return (fm_error->fme_status);
2784 }
2785 
2786 static int
2787 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2788 {
2789         nvme_t *nvme;
2790         int instance;
2791         int nregs;
2792         off_t regsize;
2793         int i;
2794         char name[32];
2795 
2796         if (cmd != DDI_ATTACH)
2797                 return (DDI_FAILURE);
2798 
2799         instance = ddi_get_instance(dip);
2800 
2801         if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2802                 return (DDI_FAILURE);
2803 
2804         nvme = ddi_get_soft_state(nvme_state, instance);
2805         ddi_set_driver_private(dip, nvme);
2806         nvme->n_dip = dip;
2807 
2808         mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2809 
2810         nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2811             DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2812         nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2813             dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2814             B_TRUE : B_FALSE;
2815         nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2816             DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2817         nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2818             DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2819         nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2820             DDI_PROP_DONTPASS, "async-event-limit",
2821             NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2822         nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2823             DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2824             B_TRUE : B_FALSE;
2825         nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2826             DDI_PROP_DONTPASS, "min-phys-block-size",
2827             NVME_DEFAULT_MIN_BLOCK_SIZE);
2828 
2829         if (!ISP2(nvme->n_min_block_size) ||
2830             (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2831                 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2832                     "using default %d", ISP2(nvme->n_min_block_size) ?
2833                     "too low" : "not a power of 2",
2834                     NVME_DEFAULT_MIN_BLOCK_SIZE);
2835                 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2836         }
2837 
2838         if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2839                 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2840         else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2841                 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2842 
2843         if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2844                 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2845 
2846         if (nvme->n_async_event_limit < 1)
2847                 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2848 
2849         nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2850         nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2851         nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2852         nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2853 
2854         /*
2855          * Setup FMA support.
2856          */
2857         nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2858             DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2859             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2860             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2861 
2862         ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2863 
2864         if (nvme->n_fm_cap) {
2865                 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2866                         nvme->n_reg_acc_attr.devacc_attr_access =
2867                             DDI_FLAGERR_ACC;
2868 
2869                 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2870                         nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2871                         nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2872                 }
2873 
2874                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2875                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2876                         pci_ereport_setup(dip);
2877 
2878                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2879                         ddi_fm_handler_register(dip, nvme_fm_errcb,
2880                             (void *)nvme);
2881         }
2882 
2883         nvme->n_progress |= NVME_FMA_INIT;
2884 
2885         /*
2886          * The spec defines several register sets. Only the controller
2887          * registers (set 1) are currently used.
2888          */
2889         if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2890             nregs < 2 ||
2891             ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2892                 goto fail;
2893 
2894         if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2895             &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2896                 dev_err(dip, CE_WARN, "!failed to map regset 1");
2897                 goto fail;
2898         }
2899 
2900         nvme->n_progress |= NVME_REGS_MAPPED;
2901 
2902         /*
2903          * Create taskq for command completion.
2904          */
2905         (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2906             ddi_driver_name(dip), ddi_get_instance(dip));
2907         nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2908             TASKQ_DEFAULTPRI, 0);
2909         if (nvme->n_cmd_taskq == NULL) {
2910                 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2911                 goto fail;
2912         }
2913 
2914         /*
2915          * Create PRP DMA cache
2916          */
2917         (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2918             ddi_driver_name(dip), ddi_get_instance(dip));
2919         nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2920             0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2921             NULL, (void *)nvme, NULL, 0);
2922 
2923         if (nvme_init(nvme) != DDI_SUCCESS)
2924                 goto fail;
2925 
2926         /*
2927          * Attach the blkdev driver for each namespace.
2928          */
2929         for (i = 0; i != nvme->n_namespace_count; i++) {
2930                 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2931                     S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2932                     DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2933                         dev_err(dip, CE_WARN,
2934                             "!failed to create minor node for namespace %d", i);
2935                         goto fail;
2936                 }
2937 
2938                 if (nvme->n_ns[i].ns_ignore)
2939                         continue;
2940 
2941                 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2942                     &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2943 
2944                 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2945                         dev_err(dip, CE_WARN,
2946                             "!failed to get blkdev handle for namespace %d", i);
2947                         goto fail;
2948                 }
2949 
2950                 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2951                     != DDI_SUCCESS) {
2952                         dev_err(dip, CE_WARN,
2953                             "!failed to attach blkdev handle for namespace %d",
2954                             i);
2955                         goto fail;
2956                 }
2957         }
2958 
2959         if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2960             NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2961             != DDI_SUCCESS) {
2962                 dev_err(dip, CE_WARN, "nvme_attach: "
2963                     "cannot create devctl minor node");
2964                 goto fail;
2965         }
2966 
2967         return (DDI_SUCCESS);
2968 
2969 fail:
2970         /* attach successful anyway so that FMA can retire the device */
2971         if (nvme->n_dead)
2972                 return (DDI_SUCCESS);
2973 
2974         (void) nvme_detach(dip, DDI_DETACH);
2975 
2976         return (DDI_FAILURE);
2977 }
2978 
2979 static int
2980 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2981 {
2982         int instance, i;
2983         nvme_t *nvme;
2984 
2985         if (cmd != DDI_DETACH)
2986                 return (DDI_FAILURE);
2987 
2988         instance = ddi_get_instance(dip);
2989 
2990         nvme = ddi_get_soft_state(nvme_state, instance);
2991 
2992         if (nvme == NULL)
2993                 return (DDI_FAILURE);
2994 
2995         ddi_remove_minor_node(dip, "devctl");
2996         mutex_destroy(&nvme->n_minor.nm_mutex);
2997 
2998         if (nvme->n_ns) {
2999                 for (i = 0; i != nvme->n_namespace_count; i++) {
3000                         ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3001                         mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3002 
3003                         if (nvme->n_ns[i].ns_bd_hdl) {
3004                                 (void) bd_detach_handle(
3005                                     nvme->n_ns[i].ns_bd_hdl);
3006                                 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3007                         }
3008 
3009                         if (nvme->n_ns[i].ns_idns)
3010                                 kmem_free(nvme->n_ns[i].ns_idns,
3011                                     sizeof (nvme_identify_nsid_t));
3012                         if (nvme->n_ns[i].ns_devid)
3013                                 strfree(nvme->n_ns[i].ns_devid);
3014                 }
3015 
3016                 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3017                     nvme->n_namespace_count);
3018         }
3019 
3020         if (nvme->n_progress & NVME_INTERRUPTS)
3021                 nvme_release_interrupts(nvme);
3022 
3023         if (nvme->n_cmd_taskq)
3024                 ddi_taskq_wait(nvme->n_cmd_taskq);
3025 
3026         if (nvme->n_ioq_count > 0) {
3027                 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3028                         if (nvme->n_ioq[i] != NULL) {
3029                                 /* TODO: send destroy queue commands */
3030                                 nvme_free_qpair(nvme->n_ioq[i]);
3031                         }
3032                 }
3033 
3034                 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3035                     (nvme->n_ioq_count + 1));
3036         }
3037 
3038         if (nvme->n_prp_cache != NULL) {
3039                 kmem_cache_destroy(nvme->n_prp_cache);
3040         }
3041 
3042         if (nvme->n_progress & NVME_REGS_MAPPED) {
3043                 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3044                 (void) nvme_reset(nvme, B_FALSE);
3045         }
3046 
3047         if (nvme->n_cmd_taskq)
3048                 ddi_taskq_destroy(nvme->n_cmd_taskq);
3049 
3050         if (nvme->n_progress & NVME_CTRL_LIMITS)
3051                 sema_destroy(&nvme->n_abort_sema);
3052 
3053         if (nvme->n_progress & NVME_ADMIN_QUEUE)
3054                 nvme_free_qpair(nvme->n_adminq);
3055 
3056         if (nvme->n_idctl)
3057                 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3058 
3059         if (nvme->n_progress & NVME_REGS_MAPPED)
3060                 ddi_regs_map_free(&nvme->n_regh);
3061 
3062         if (nvme->n_progress & NVME_FMA_INIT) {
3063                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3064                         ddi_fm_handler_unregister(nvme->n_dip);
3065 
3066                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3067                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3068                         pci_ereport_teardown(nvme->n_dip);
3069 
3070                 ddi_fm_fini(nvme->n_dip);
3071         }
3072 
3073         if (nvme->n_vendor != NULL)
3074                 strfree(nvme->n_vendor);
3075 
3076         if (nvme->n_product != NULL)
3077                 strfree(nvme->n_product);
3078 
3079         ddi_soft_state_free(nvme_state, instance);
3080 
3081         return (DDI_SUCCESS);
3082 }
3083 
3084 static int
3085 nvme_quiesce(dev_info_t *dip)
3086 {
3087         int instance;
3088         nvme_t *nvme;
3089 
3090         instance = ddi_get_instance(dip);
3091 
3092         nvme = ddi_get_soft_state(nvme_state, instance);
3093 
3094         if (nvme == NULL)
3095                 return (DDI_FAILURE);
3096 
3097         nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3098 
3099         (void) nvme_reset(nvme, B_TRUE);
3100 
3101         return (DDI_FAILURE);
3102 }
3103 
3104 static int
3105 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3106 {
3107         nvme_t *nvme = cmd->nc_nvme;
3108         int nprp_page, nprp;
3109         uint64_t *prp;
3110 
3111         if (xfer->x_ndmac == 0)
3112                 return (DDI_FAILURE);
3113 
3114         cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3115         ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3116 
3117         if (xfer->x_ndmac == 1) {
3118                 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3119                 return (DDI_SUCCESS);
3120         } else if (xfer->x_ndmac == 2) {
3121                 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3122                 return (DDI_SUCCESS);
3123         }
3124 
3125         xfer->x_ndmac--;
3126 
3127         nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3128         ASSERT(nprp_page > 0);
3129         nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3130 
3131         /*
3132          * We currently don't support chained PRPs and set up our DMA
3133          * attributes to reflect that. If we still get an I/O request
3134          * that needs a chained PRP something is very wrong.
3135          */
3136         VERIFY(nprp == 1);
3137 
3138         cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3139         bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3140 
3141         cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3142 
3143         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3144         for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3145             xfer->x_ndmac > 0;
3146             prp++, xfer->x_ndmac--) {
3147                 *prp = xfer->x_dmac.dmac_laddress;
3148                 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3149         }
3150 
3151         (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3152             DDI_DMA_SYNC_FORDEV);
3153         return (DDI_SUCCESS);
3154 }
3155 
3156 static nvme_cmd_t *
3157 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3158 {
3159         nvme_t *nvme = ns->ns_nvme;
3160         nvme_cmd_t *cmd;
3161 
3162         /*
3163          * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3164          */
3165         cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3166             KM_NOSLEEP : KM_SLEEP);
3167 
3168         if (cmd == NULL)
3169                 return (NULL);
3170 
3171         cmd->nc_sqe.sqe_opc = opc;
3172         cmd->nc_callback = nvme_bd_xfer_done;
3173         cmd->nc_xfer = xfer;
3174 
3175         switch (opc) {
3176         case NVME_OPC_NVM_WRITE:
3177         case NVME_OPC_NVM_READ:
3178                 VERIFY(xfer->x_nblks <= 0x10000);
3179 
3180                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3181 
3182                 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3183                 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3184                 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3185 
3186                 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3187                         goto fail;
3188                 break;
3189 
3190         case NVME_OPC_NVM_FLUSH:
3191                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3192                 break;
3193 
3194         default:
3195                 goto fail;
3196         }
3197 
3198         return (cmd);
3199 
3200 fail:
3201         nvme_free_cmd(cmd);
3202         return (NULL);
3203 }
3204 
3205 static void
3206 nvme_bd_xfer_done(void *arg)
3207 {
3208         nvme_cmd_t *cmd = arg;
3209         bd_xfer_t *xfer = cmd->nc_xfer;
3210         int error = 0;
3211 
3212         error = nvme_check_cmd_status(cmd);
3213         nvme_free_cmd(cmd);
3214 
3215         bd_xfer_done(xfer, error);
3216 }
3217 
3218 static void
3219 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3220 {
3221         nvme_namespace_t *ns = arg;
3222         nvme_t *nvme = ns->ns_nvme;
3223 
3224         /*
3225          * blkdev maintains one queue size per instance (namespace),
3226          * but all namespace share the I/O queues.
3227          * TODO: need to figure out a sane default, or use per-NS I/O queues,
3228          * or change blkdev to handle EAGAIN
3229          */
3230         drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3231             / nvme->n_namespace_count;
3232 
3233         /*
3234          * d_maxxfer is not set, which means the value is taken from the DMA
3235          * attributes specified to bd_alloc_handle.
3236          */
3237 
3238         drive->d_removable = B_FALSE;
3239         drive->d_hotpluggable = B_FALSE;
3240 
3241         bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3242         drive->d_target = ns->ns_id;
3243         drive->d_lun = 0;
3244 
3245         drive->d_model = nvme->n_idctl->id_model;
3246         drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3247         drive->d_vendor = nvme->n_vendor;
3248         drive->d_vendor_len = strlen(nvme->n_vendor);
3249         drive->d_product = nvme->n_product;
3250         drive->d_product_len = strlen(nvme->n_product);
3251         drive->d_serial = nvme->n_idctl->id_serial;
3252         drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3253         drive->d_revision = nvme->n_idctl->id_fwrev;
3254         drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3255 }
3256 
3257 static int
3258 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3259 {
3260         nvme_namespace_t *ns = arg;
3261 
3262         media->m_nblks = ns->ns_block_count;
3263         media->m_blksize = ns->ns_block_size;
3264         media->m_readonly = B_FALSE;
3265         media->m_solidstate = B_TRUE;
3266 
3267         media->m_pblksize = ns->ns_best_block_size;
3268 
3269         return (0);
3270 }
3271 
3272 static int
3273 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3274 {
3275         nvme_t *nvme = ns->ns_nvme;
3276         nvme_cmd_t *cmd;
3277         nvme_qpair_t *ioq;
3278         boolean_t poll;
3279         int ret;
3280 
3281         if (nvme->n_dead)
3282                 return (EIO);
3283 
3284         cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3285         if (cmd == NULL)
3286                 return (ENOMEM);
3287 
3288         cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3289         ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3290         ioq = nvme->n_ioq[cmd->nc_sqid];
3291 
3292         /*
3293          * Get the polling flag before submitting the command. The command may
3294          * complete immediately after it was submitted, which means we must
3295          * treat both cmd and xfer as if they have been freed already.
3296          */
3297         poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3298 
3299         ret = nvme_submit_io_cmd(ioq, cmd);
3300 
3301         if (ret != 0)
3302                 return (ret);
3303 
3304         if (!poll)
3305                 return (0);
3306 
3307         do {
3308                 cmd = nvme_retrieve_cmd(nvme, ioq);
3309                 if (cmd != NULL)
3310                         nvme_bd_xfer_done(cmd);
3311                 else
3312                         drv_usecwait(10);
3313         } while (ioq->nq_active_cmds != 0);
3314 
3315         return (0);
3316 }
3317 
3318 static int
3319 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3320 {
3321         nvme_namespace_t *ns = arg;
3322 
3323         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3324 }
3325 
3326 static int
3327 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3328 {
3329         nvme_namespace_t *ns = arg;
3330 
3331         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3332 }
3333 
3334 static int
3335 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3336 {
3337         nvme_namespace_t *ns = arg;
3338 
3339         if (ns->ns_nvme->n_dead)
3340                 return (EIO);
3341 
3342         /*
3343          * If the volatile write cache is not present or not enabled the FLUSH
3344          * command is a no-op, so we can take a shortcut here.
3345          */
3346         if (!ns->ns_nvme->n_write_cache_present) {
3347                 bd_xfer_done(xfer, ENOTSUP);
3348                 return (0);
3349         }
3350 
3351         if (!ns->ns_nvme->n_write_cache_enabled) {
3352                 bd_xfer_done(xfer, 0);
3353                 return (0);
3354         }
3355 
3356         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3357 }
3358 
3359 static int
3360 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3361 {
3362         nvme_namespace_t *ns = arg;
3363 
3364         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3365         if (*(uint64_t *)ns->ns_eui64 != 0) {
3366                 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3367                     sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3368         } else {
3369                 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3370                     strlen(ns->ns_devid), ns->ns_devid, devid));
3371         }
3372 }
3373 
3374 static int
3375 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3376 {
3377 #ifndef __lock_lint
3378         _NOTE(ARGUNUSED(cred_p));
3379 #endif
3380         minor_t minor = getminor(*devp);
3381         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3382         int nsid = NVME_MINOR_NSID(minor);
3383         nvme_minor_state_t *nm;
3384         int rv = 0;
3385 
3386         if (otyp != OTYP_CHR)
3387                 return (EINVAL);
3388 
3389         if (nvme == NULL)
3390                 return (ENXIO);
3391 
3392         if (nsid > nvme->n_namespace_count)
3393                 return (ENXIO);
3394 
3395         if (nvme->n_dead)
3396                 return (EIO);
3397 
3398         nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3399 
3400         mutex_enter(&nm->nm_mutex);
3401         if (nm->nm_oexcl) {
3402                 rv = EBUSY;
3403                 goto out;
3404         }
3405 
3406         if (flag & FEXCL) {
3407                 if (nm->nm_ocnt != 0) {
3408                         rv = EBUSY;
3409                         goto out;
3410                 }
3411                 nm->nm_oexcl = B_TRUE;
3412         }
3413 
3414         nm->nm_ocnt++;
3415 
3416 out:
3417         mutex_exit(&nm->nm_mutex);
3418         return (rv);
3419 
3420 }
3421 
3422 static int
3423 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3424 {
3425 #ifndef __lock_lint
3426         _NOTE(ARGUNUSED(cred_p));
3427         _NOTE(ARGUNUSED(flag));
3428 #endif
3429         minor_t minor = getminor(dev);
3430         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3431         int nsid = NVME_MINOR_NSID(minor);
3432         nvme_minor_state_t *nm;
3433 
3434         if (otyp != OTYP_CHR)
3435                 return (ENXIO);
3436 
3437         if (nvme == NULL)
3438                 return (ENXIO);
3439 
3440         if (nsid > nvme->n_namespace_count)
3441                 return (ENXIO);
3442 
3443         nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3444 
3445         mutex_enter(&nm->nm_mutex);
3446         if (nm->nm_oexcl)
3447                 nm->nm_oexcl = B_FALSE;
3448 
3449         ASSERT(nm->nm_ocnt > 0);
3450         nm->nm_ocnt--;
3451         mutex_exit(&nm->nm_mutex);
3452 
3453         return (0);
3454 }
3455 
3456 static int
3457 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3458     cred_t *cred_p)
3459 {
3460         _NOTE(ARGUNUSED(cred_p));
3461         int rv = 0;
3462         void *idctl;
3463 
3464         if ((mode & FREAD) == 0)
3465                 return (EPERM);
3466 
3467         if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3468                 return (EINVAL);
3469 
3470         if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3471                 return (rv);
3472 
3473         if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3474             != 0)
3475                 rv = EFAULT;
3476 
3477         kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3478 
3479         return (rv);
3480 }
3481 
3482 static int
3483 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3484     int mode, cred_t *cred_p)
3485 {
3486         _NOTE(ARGUNUSED(nsid, cred_p));
3487         int rv = 0;
3488         nvme_reg_cap_t cap = { 0 };
3489         nvme_capabilities_t nc;
3490 
3491         if ((mode & FREAD) == 0)
3492                 return (EPERM);
3493 
3494         if (nioc->n_len < sizeof (nc))
3495                 return (EINVAL);
3496 
3497         cap.r = nvme_get64(nvme, NVME_REG_CAP);
3498 
3499         /*
3500          * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3501          * specify the base page size of 4k (1<<12), so add 12 here to
3502          * get the real page size value.
3503          */
3504         nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3505         nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3506 
3507         if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3508                 rv = EFAULT;
3509 
3510         return (rv);
3511 }
3512 
3513 static int
3514 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3515     int mode, cred_t *cred_p)
3516 {
3517         _NOTE(ARGUNUSED(cred_p));
3518         void *log = NULL;
3519         size_t bufsize = 0;
3520         int rv = 0;
3521 
3522         if ((mode & FREAD) == 0)
3523                 return (EPERM);
3524 
3525         switch (nioc->n_arg) {
3526         case NVME_LOGPAGE_ERROR:
3527                 if (nsid != 0)
3528                         return (EINVAL);
3529                 break;
3530         case NVME_LOGPAGE_HEALTH:
3531                 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3532                         return (EINVAL);
3533 
3534                 if (nsid == 0)
3535                         nsid = (uint32_t)-1;
3536 
3537                 break;
3538         case NVME_LOGPAGE_FWSLOT:
3539                 if (nsid != 0)
3540                         return (EINVAL);
3541                 break;
3542         default:
3543                 return (EINVAL);
3544         }
3545 
3546         if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3547             != DDI_SUCCESS)
3548                 return (EIO);
3549 
3550         if (nioc->n_len < bufsize) {
3551                 kmem_free(log, bufsize);
3552                 return (EINVAL);
3553         }
3554 
3555         if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3556                 rv = EFAULT;
3557 
3558         nioc->n_len = bufsize;
3559         kmem_free(log, bufsize);
3560 
3561         return (rv);
3562 }
3563 
3564 static int
3565 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3566     int mode, cred_t *cred_p)
3567 {
3568         _NOTE(ARGUNUSED(cred_p));
3569         void *buf = NULL;
3570         size_t bufsize = 0;
3571         uint32_t res = 0;
3572         uint8_t feature;
3573         int rv = 0;
3574 
3575         if ((mode & FREAD) == 0)
3576                 return (EPERM);
3577 
3578         if ((nioc->n_arg >> 32) > 0xff)
3579                 return (EINVAL);
3580 
3581         feature = (uint8_t)(nioc->n_arg >> 32);
3582 
3583         switch (feature) {
3584         case NVME_FEAT_ARBITRATION:
3585         case NVME_FEAT_POWER_MGMT:
3586         case NVME_FEAT_TEMPERATURE:
3587         case NVME_FEAT_ERROR:
3588         case NVME_FEAT_NQUEUES:
3589         case NVME_FEAT_INTR_COAL:
3590         case NVME_FEAT_WRITE_ATOM:
3591         case NVME_FEAT_ASYNC_EVENT:
3592         case NVME_FEAT_PROGRESS:
3593                 if (nsid != 0)
3594                         return (EINVAL);
3595                 break;
3596 
3597         case NVME_FEAT_INTR_VECT:
3598                 if (nsid != 0)
3599                         return (EINVAL);
3600 
3601                 res = nioc->n_arg & 0xffffffffUL;
3602                 if (res >= nvme->n_intr_cnt)
3603                         return (EINVAL);
3604                 break;
3605 
3606         case NVME_FEAT_LBA_RANGE:
3607                 if (nvme->n_lba_range_supported == B_FALSE)
3608                         return (EINVAL);
3609 
3610                 if (nsid == 0 ||
3611                     nsid > nvme->n_namespace_count)
3612                         return (EINVAL);
3613 
3614                 break;
3615 
3616         case NVME_FEAT_WRITE_CACHE:
3617                 if (nsid != 0)
3618                         return (EINVAL);
3619 
3620                 if (!nvme->n_write_cache_present)
3621                         return (EINVAL);
3622 
3623                 break;
3624 
3625         case NVME_FEAT_AUTO_PST:
3626                 if (nsid != 0)
3627                         return (EINVAL);
3628 
3629                 if (!nvme->n_auto_pst_supported)
3630                         return (EINVAL);
3631 
3632                 break;
3633 
3634         default:
3635                 return (EINVAL);
3636         }
3637 
3638         rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3639         if (rv != 0)
3640                 return (rv);
3641 
3642         if (nioc->n_len < bufsize) {
3643                 kmem_free(buf, bufsize);
3644                 return (EINVAL);
3645         }
3646 
3647         if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3648                 rv = EFAULT;
3649 
3650         kmem_free(buf, bufsize);
3651         nioc->n_arg = res;
3652         nioc->n_len = bufsize;
3653 
3654         return (rv);
3655 }
3656 
3657 static int
3658 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3659     cred_t *cred_p)
3660 {
3661         _NOTE(ARGUNUSED(nsid, mode, cred_p));
3662 
3663         if ((mode & FREAD) == 0)
3664                 return (EPERM);
3665 
3666         nioc->n_arg = nvme->n_intr_cnt;
3667         return (0);
3668 }
3669 
3670 static int
3671 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3672     cred_t *cred_p)
3673 {
3674         _NOTE(ARGUNUSED(nsid, cred_p));
3675         int rv = 0;
3676 
3677         if ((mode & FREAD) == 0)
3678                 return (EPERM);
3679 
3680         if (nioc->n_len < sizeof (nvme->n_version))
3681                 return (ENOMEM);
3682 
3683         if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3684             sizeof (nvme->n_version), mode) != 0)
3685                 rv = EFAULT;
3686 
3687         return (rv);
3688 }
3689 
3690 static int
3691 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3692     cred_t *cred_p)
3693 {
3694         _NOTE(ARGUNUSED(mode));
3695         nvme_format_nvm_t frmt = { 0 };
3696         int c_nsid = nsid != 0 ? nsid - 1 : 0;
3697 
3698         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3699                 return (EPERM);
3700 
3701         frmt.r = nioc->n_arg & 0xffffffff;
3702 
3703         /*
3704          * Check whether the FORMAT NVM command is supported.
3705          */
3706         if (nvme->n_idctl->id_oacs.oa_format == 0)
3707                 return (EINVAL);
3708 
3709         /*
3710          * Don't allow format or secure erase of individual namespace if that
3711          * would cause a format or secure erase of all namespaces.
3712          */
3713         if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3714                 return (EINVAL);
3715 
3716         if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3717             nvme->n_idctl->id_fna.fn_sec_erase != 0)
3718                 return (EINVAL);
3719 
3720         /*
3721          * Don't allow formatting with Protection Information.
3722          */
3723         if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3724                 return (EINVAL);
3725 
3726         /*
3727          * Don't allow formatting using an illegal LBA format, or any LBA format
3728          * that uses metadata.
3729          */
3730         if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3731             nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3732                 return (EINVAL);
3733 
3734         /*
3735          * Don't allow formatting using an illegal Secure Erase setting.
3736          */
3737         if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3738             (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3739             nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3740                 return (EINVAL);
3741 
3742         if (nsid == 0)
3743                 nsid = (uint32_t)-1;
3744 
3745         return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3746             frmt.b.fm_ses));
3747 }
3748 
3749 static int
3750 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3751     cred_t *cred_p)
3752 {
3753         _NOTE(ARGUNUSED(nioc, mode));
3754         int rv = 0;
3755 
3756         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3757                 return (EPERM);
3758 
3759         if (nsid == 0)
3760                 return (EINVAL);
3761 
3762         rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3763         if (rv != DDI_SUCCESS)
3764                 rv = EBUSY;
3765 
3766         return (rv);
3767 }
3768 
3769 static int
3770 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3771     cred_t *cred_p)
3772 {
3773         _NOTE(ARGUNUSED(nioc, mode));
3774         nvme_identify_nsid_t *idns;
3775         int rv = 0;
3776 
3777         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3778                 return (EPERM);
3779 
3780         if (nsid == 0)
3781                 return (EINVAL);
3782 
3783         /*
3784          * Identify namespace again, free old identify data.
3785          */
3786         idns = nvme->n_ns[nsid - 1].ns_idns;
3787         if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3788                 return (EIO);
3789 
3790         kmem_free(idns, sizeof (nvme_identify_nsid_t));
3791 
3792         rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3793         if (rv != DDI_SUCCESS)
3794                 rv = EBUSY;
3795 
3796         return (rv);
3797 }
3798 
3799 static int
3800 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3801     int *rval_p)
3802 {
3803 #ifndef __lock_lint
3804         _NOTE(ARGUNUSED(rval_p));
3805 #endif
3806         minor_t minor = getminor(dev);
3807         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3808         int nsid = NVME_MINOR_NSID(minor);
3809         int rv = 0;
3810         nvme_ioctl_t nioc;
3811 
3812         int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3813                 NULL,
3814                 nvme_ioctl_identify,
3815                 nvme_ioctl_identify,
3816                 nvme_ioctl_capabilities,
3817                 nvme_ioctl_get_logpage,
3818                 nvme_ioctl_get_features,
3819                 nvme_ioctl_intr_cnt,
3820                 nvme_ioctl_version,
3821                 nvme_ioctl_format,
3822                 nvme_ioctl_detach,
3823                 nvme_ioctl_attach
3824         };
3825 
3826         if (nvme == NULL)
3827                 return (ENXIO);
3828 
3829         if (nsid > nvme->n_namespace_count)
3830                 return (ENXIO);
3831 
3832         if (IS_DEVCTL(cmd))
3833                 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3834 
3835 #ifdef _MULTI_DATAMODEL
3836         switch (ddi_model_convert_from(mode & FMODELS)) {
3837         case DDI_MODEL_ILP32: {
3838                 nvme_ioctl32_t nioc32;
3839                 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3840                     mode) != 0)
3841                         return (EFAULT);
3842                 nioc.n_len = nioc32.n_len;
3843                 nioc.n_buf = nioc32.n_buf;
3844                 nioc.n_arg = nioc32.n_arg;
3845                 break;
3846         }
3847         case DDI_MODEL_NONE:
3848 #endif
3849                 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3850                     != 0)
3851                         return (EFAULT);
3852 #ifdef _MULTI_DATAMODEL
3853                 break;
3854         }
3855 #endif
3856 
3857         if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3858                 return (EIO);
3859 
3860 
3861         if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3862                 /*
3863                  * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3864                  * attachment point nodes.
3865                  */
3866                 nsid = 0;
3867         } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3868                 /*
3869                  * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3870                  * will always return identify data for namespace 1.
3871                  */
3872                 nsid = 1;
3873         }
3874 
3875         if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3876                 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3877                     cred_p);
3878         else
3879                 rv = EINVAL;
3880 
3881 #ifdef _MULTI_DATAMODEL
3882         switch (ddi_model_convert_from(mode & FMODELS)) {
3883         case DDI_MODEL_ILP32: {
3884                 nvme_ioctl32_t nioc32;
3885 
3886                 nioc32.n_len = (size32_t)nioc.n_len;
3887                 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3888                 nioc32.n_arg = nioc.n_arg;
3889 
3890                 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3891                     mode) != 0)
3892                         return (EFAULT);
3893                 break;
3894         }
3895         case DDI_MODEL_NONE:
3896 #endif
3897                 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3898                     != 0)
3899                         return (EFAULT);
3900 #ifdef _MULTI_DATAMODEL
3901                 break;
3902         }
3903 #endif
3904 
3905         return (rv);
3906 }