1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
  14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
  15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
  16  * Copyright 2017 Joyent, Inc.
  17  */
  18 
  19 /*
  20  * blkdev driver for NVMe compliant storage devices
  21  *
  22  * This driver was written to conform to version 1.2.1 of the NVMe
  23  * specification.  It may work with newer versions, but that is completely
  24  * untested and disabled by default.
  25  *
  26  * The driver has only been tested on x86 systems and will not work on big-
  27  * endian systems without changes to the code accessing registers and data
  28  * structures used by the hardware.
  29  *
  30  *
  31  * Interrupt Usage:
  32  *
  33  * The driver will use a single interrupt while configuring the device as the
  34  * specification requires, but contrary to the specification it will try to use
  35  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
  36  * will switch to multiple-message MSI(-X) if supported. The driver wants to
  37  * have one interrupt vector per CPU, but it will work correctly if less are
  38  * available. Interrupts can be shared by queues, the interrupt handler will
  39  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
  40  * the admin queue will share an interrupt with one I/O queue. The interrupt
  41  * handler will retrieve completed commands from all queues sharing an interrupt
  42  * vector and will post them to a taskq for completion processing.
  43  *
  44  *
  45  * Command Processing:
  46  *
  47  * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
  48  * to 65536 I/O commands. The driver will configure one I/O queue pair per
  49  * available interrupt vector, with the queue length usually much smaller than
  50  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
  51  * interrupt vectors will be used.
  52  *
  53  * Additionally the hardware provides a single special admin queue pair that can
  54  * hold up to 4096 admin commands.
  55  *
  56  * From the hardware perspective both queues of a queue pair are independent,
  57  * but they share some driver state: the command array (holding pointers to
  58  * commands currently being processed by the hardware) and the active command
  59  * counter. Access to the submission side of a queue pair and the shared state
  60  * is protected by nq_mutex. The completion side of a queue pair does not need
  61  * that protection apart from its access to the shared state; it is called only
  62  * in the interrupt handler which does not run concurrently for the same
  63  * interrupt vector.
  64  *
  65  * When a command is submitted to a queue pair the active command counter is
  66  * incremented and a pointer to the command is stored in the command array. The
  67  * array index is used as command identifier (CID) in the submission queue
  68  * entry. Some commands may take a very long time to complete, and if the queue
  69  * wraps around in that time a submission may find the next array slot to still
  70  * be used by a long-running command. In this case the array is sequentially
  71  * searched for the next free slot. The length of the command array is the same
  72  * as the configured queue length.
  73  *
  74  *
  75  * Polled I/O Support:
  76  *
  77  * For kernel core dump support the driver can do polled I/O. As interrupts are
  78  * turned off while dumping the driver will just submit a command in the regular
  79  * way, and then repeatedly attempt a command retrieval until it gets the
  80  * command back.
  81  *
  82  *
  83  * Namespace Support:
  84  *
  85  * NVMe devices can have multiple namespaces, each being a independent data
  86  * store. The driver supports multiple namespaces and creates a blkdev interface
  87  * for each namespace found. Namespaces can have various attributes to support
  88  * thin provisioning and protection information. This driver does not support
  89  * any of this and ignores namespaces that have these attributes.
  90  *
  91  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
  92  * (EUI64). This driver uses the EUI64 if present to generate the devid and
  93  * passes it to blkdev to use it in the device node names. As this is currently
  94  * untested namespaces with EUI64 are ignored by default.
  95  *
  96  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
  97  * single controller. This is an artificial limit imposed by the driver to be
  98  * able to address a reasonable number of controllers and namespaces using a
  99  * 32bit minor node number.
 100  *
 101  *
 102  * Minor nodes:
 103  *
 104  * For each NVMe device the driver exposes one minor node for the controller and
 105  * one minor node for each namespace. The only operations supported by those
 106  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
 107  * interface for the nvmeadm(1M) utility.
 108  *
 109  *
 110  * Blkdev Interface:
 111  *
 112  * This driver uses blkdev to do all the heavy lifting involved with presenting
 113  * a disk device to the system. As a result, the processing of I/O requests is
 114  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
 115  * setup, and splitting of transfers into manageable chunks.
 116  *
 117  * I/O requests coming in from blkdev are turned into NVM commands and posted to
 118  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
 119  * queues. There is currently no timeout handling of I/O commands.
 120  *
 121  * Blkdev also supports querying device/media information and generating a
 122  * devid. The driver reports the best block size as determined by the namespace
 123  * format back to blkdev as physical block size to support partition and block
 124  * alignment. The devid is either based on the namespace EUI64, if present, or
 125  * composed using the device vendor ID, model number, serial number, and the
 126  * namespace ID.
 127  *
 128  *
 129  * Error Handling:
 130  *
 131  * Error handling is currently limited to detecting fatal hardware errors,
 132  * either by asynchronous events, or synchronously through command status or
 133  * admin command timeouts. In case of severe errors the device is fenced off,
 134  * all further requests will return EIO. FMA is then called to fault the device.
 135  *
 136  * The hardware has a limit for outstanding asynchronous event requests. Before
 137  * this limit is known the driver assumes it is at least 1 and posts a single
 138  * asynchronous request. Later when the limit is known more asynchronous event
 139  * requests are posted to allow quicker reception of error information. When an
 140  * asynchronous event is posted by the hardware the driver will parse the error
 141  * status fields and log information or fault the device, depending on the
 142  * severity of the asynchronous event. The asynchronous event request is then
 143  * reused and posted to the admin queue again.
 144  *
 145  * On command completion the command status is checked for errors. In case of
 146  * errors indicating a driver bug the driver panics. Almost all other error
 147  * status values just cause EIO to be returned.
 148  *
 149  * Command timeouts are currently detected for all admin commands except
 150  * asynchronous event requests. If a command times out and the hardware appears
 151  * to be healthy the driver attempts to abort the command. If this fails the
 152  * driver assumes the device to be dead, fences it off, and calls FMA to retire
 153  * it. In general admin commands are issued at attach time only. No timeout
 154  * handling of normal I/O commands is presently done.
 155  *
 156  * In some cases it may be possible that the ABORT command times out, too. In
 157  * that case the device is also declared dead and fenced off.
 158  *
 159  *
 160  * Quiesce / Fast Reboot:
 161  *
 162  * The driver currently does not support fast reboot. A quiesce(9E) entry point
 163  * is still provided which is used to send a shutdown notification to the
 164  * device.
 165  *
 166  *
 167  * Driver Configuration:
 168  *
 169  * The following driver properties can be changed to control some aspects of the
 170  * drivers operation:
 171  * - strict-version: can be set to 0 to allow devices conforming to newer
 172  *   versions or namespaces with EUI64 to be used
 173  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
 174  *   specific command status as a fatal error leading device faulting
 175  * - admin-queue-len: the maximum length of the admin queue (16-4096)
 176  * - io-queue-len: the maximum length of the I/O queues (16-65536)
 177  * - async-event-limit: the maximum number of asynchronous event requests to be
 178  *   posted by the driver
 179  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
 180  *   cache
 181  * - min-phys-block-size: the minimum physical block size to report to blkdev,
 182  *   which is among other things the basis for ZFS vdev ashift
 183  *
 184  *
 185  * TODO:
 186  * - figure out sane default for I/O queue depth reported to blkdev
 187  * - FMA handling of media errors
 188  * - support for devices supporting very large I/O requests using chained PRPs
 189  * - support for configuring hardware parameters like interrupt coalescing
 190  * - support for media formatting and hard partitioning into namespaces
 191  * - support for big-endian systems
 192  * - support for fast reboot
 193  * - support for firmware updates
 194  * - support for NVMe Subsystem Reset (1.1)
 195  * - support for Scatter/Gather lists (1.1)
 196  * - support for Reservations (1.1)
 197  * - support for power management
 198  */
 199 
 200 #include <sys/byteorder.h>
 201 #ifdef _BIG_ENDIAN
 202 #error nvme driver needs porting for big-endian platforms
 203 #endif
 204 
 205 #include <sys/modctl.h>
 206 #include <sys/conf.h>
 207 #include <sys/devops.h>
 208 #include <sys/ddi.h>
 209 #include <sys/sunddi.h>
 210 #include <sys/sunndi.h>
 211 #include <sys/bitmap.h>
 212 #include <sys/sysmacros.h>
 213 #include <sys/param.h>
 214 #include <sys/varargs.h>
 215 #include <sys/cpuvar.h>
 216 #include <sys/disp.h>
 217 #include <sys/blkdev.h>
 218 #include <sys/atomic.h>
 219 #include <sys/archsystm.h>
 220 #include <sys/sata/sata_hba.h>
 221 #include <sys/stat.h>
 222 #include <sys/policy.h>
 223 
 224 #include <sys/nvme.h>
 225 
 226 #ifdef __x86
 227 #include <sys/x86_archext.h>
 228 #endif
 229 
 230 #include "nvme_reg.h"
 231 #include "nvme_var.h"
 232 
 233 
 234 /* NVMe spec version supported */
 235 static const int nvme_version_major = 1;
 236 static const int nvme_version_minor = 2;
 237 
 238 /* tunable for admin command timeout in seconds, default is 1s */
 239 int nvme_admin_cmd_timeout = 1;
 240 
 241 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
 242 int nvme_format_cmd_timeout = 600;
 243 
 244 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
 245 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
 246 static int nvme_quiesce(dev_info_t *);
 247 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
 248 static int nvme_setup_interrupts(nvme_t *, int, int);
 249 static void nvme_release_interrupts(nvme_t *);
 250 static uint_t nvme_intr(caddr_t, caddr_t);
 251 
 252 static void nvme_shutdown(nvme_t *, int, boolean_t);
 253 static boolean_t nvme_reset(nvme_t *, boolean_t);
 254 static int nvme_init(nvme_t *);
 255 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
 256 static void nvme_free_cmd(nvme_cmd_t *);
 257 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
 258     bd_xfer_t *);
 259 static int nvme_admin_cmd(nvme_cmd_t *, int);
 260 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
 261 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
 262 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
 263 static void nvme_wakeup_cmd(void *);
 264 static void nvme_async_event_task(void *);
 265 
 266 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
 267 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
 268 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
 269 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
 270 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
 271 static inline int nvme_check_cmd_status(nvme_cmd_t *);
 272 
 273 static void nvme_abort_cmd(nvme_cmd_t *);
 274 static int nvme_async_event(nvme_t *);
 275 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
 276     boolean_t, uint8_t);
 277 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
 278 static void *nvme_identify(nvme_t *, uint32_t);
 279 static boolean_t nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
 280     uint32_t *);
 281 static boolean_t nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
 282     void **, size_t *);
 283 static boolean_t nvme_write_cache_set(nvme_t *, boolean_t);
 284 static int nvme_set_nqueues(nvme_t *, uint16_t);
 285 
 286 static void nvme_free_dma(nvme_dma_t *);
 287 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
 288     nvme_dma_t **);
 289 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
 290     nvme_dma_t **);
 291 static void nvme_free_qpair(nvme_qpair_t *);
 292 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
 293 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
 294 
 295 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
 296 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
 297 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
 298 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
 299 
 300 static boolean_t nvme_check_regs_hdl(nvme_t *);
 301 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
 302 
 303 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
 304 
 305 static void nvme_bd_xfer_done(void *);
 306 static void nvme_bd_driveinfo(void *, bd_drive_t *);
 307 static int nvme_bd_mediainfo(void *, bd_media_t *);
 308 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
 309 static int nvme_bd_read(void *, bd_xfer_t *);
 310 static int nvme_bd_write(void *, bd_xfer_t *);
 311 static int nvme_bd_sync(void *, bd_xfer_t *);
 312 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
 313 
 314 static int nvme_prp_dma_constructor(void *, void *, int);
 315 static void nvme_prp_dma_destructor(void *, void *);
 316 
 317 static void nvme_prepare_devid(nvme_t *, uint32_t);
 318 
 319 static int nvme_open(dev_t *, int, int, cred_t *);
 320 static int nvme_close(dev_t, int, int, cred_t *);
 321 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
 322 
 323 #define NVME_MINOR_INST_SHIFT   9
 324 #define NVME_MINOR(inst, nsid)  (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
 325 #define NVME_MINOR_INST(minor)  ((minor) >> NVME_MINOR_INST_SHIFT)
 326 #define NVME_MINOR_NSID(minor)  ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
 327 #define NVME_MINOR_MAX          (NVME_MINOR(1, 0) - 2)
 328 
 329 static void *nvme_state;
 330 static kmem_cache_t *nvme_cmd_cache;
 331 
 332 /*
 333  * DMA attributes for queue DMA memory
 334  *
 335  * Queue DMA memory must be page aligned. The maximum length of a queue is
 336  * 65536 entries, and an entry can be 64 bytes long.
 337  */
 338 static ddi_dma_attr_t nvme_queue_dma_attr = {
 339         .dma_attr_version       = DMA_ATTR_V0,
 340         .dma_attr_addr_lo       = 0,
 341         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 342         .dma_attr_count_max     = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
 343         .dma_attr_align         = 0x1000,
 344         .dma_attr_burstsizes    = 0x7ff,
 345         .dma_attr_minxfer       = 0x1000,
 346         .dma_attr_maxxfer       = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
 347         .dma_attr_seg           = 0xffffffffffffffffULL,
 348         .dma_attr_sgllen        = 1,
 349         .dma_attr_granular      = 1,
 350         .dma_attr_flags         = 0,
 351 };
 352 
 353 /*
 354  * DMA attributes for transfers using Physical Region Page (PRP) entries
 355  *
 356  * A PRP entry describes one page of DMA memory using the page size specified
 357  * in the controller configuration's memory page size register (CC.MPS). It uses
 358  * a 64bit base address aligned to this page size. There is no limitation on
 359  * chaining PRPs together for arbitrarily large DMA transfers.
 360  */
 361 static ddi_dma_attr_t nvme_prp_dma_attr = {
 362         .dma_attr_version       = DMA_ATTR_V0,
 363         .dma_attr_addr_lo       = 0,
 364         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 365         .dma_attr_count_max     = 0xfff,
 366         .dma_attr_align         = 0x1000,
 367         .dma_attr_burstsizes    = 0x7ff,
 368         .dma_attr_minxfer       = 0x1000,
 369         .dma_attr_maxxfer       = 0x1000,
 370         .dma_attr_seg           = 0xfff,
 371         .dma_attr_sgllen        = -1,
 372         .dma_attr_granular      = 1,
 373         .dma_attr_flags         = 0,
 374 };
 375 
 376 /*
 377  * DMA attributes for transfers using scatter/gather lists
 378  *
 379  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
 380  * 32bit length field. SGL Segment and SGL Last Segment entries require the
 381  * length to be a multiple of 16 bytes.
 382  */
 383 static ddi_dma_attr_t nvme_sgl_dma_attr = {
 384         .dma_attr_version       = DMA_ATTR_V0,
 385         .dma_attr_addr_lo       = 0,
 386         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 387         .dma_attr_count_max     = 0xffffffffUL,
 388         .dma_attr_align         = 1,
 389         .dma_attr_burstsizes    = 0x7ff,
 390         .dma_attr_minxfer       = 0x10,
 391         .dma_attr_maxxfer       = 0xfffffffffULL,
 392         .dma_attr_seg           = 0xffffffffffffffffULL,
 393         .dma_attr_sgllen        = -1,
 394         .dma_attr_granular      = 0x10,
 395         .dma_attr_flags         = 0
 396 };
 397 
 398 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
 399         .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 400         .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 401         .devacc_attr_dataorder  = DDI_STRICTORDER_ACC
 402 };
 403 
 404 static struct cb_ops nvme_cb_ops = {
 405         .cb_open        = nvme_open,
 406         .cb_close       = nvme_close,
 407         .cb_strategy    = nodev,
 408         .cb_print       = nodev,
 409         .cb_dump        = nodev,
 410         .cb_read        = nodev,
 411         .cb_write       = nodev,
 412         .cb_ioctl       = nvme_ioctl,
 413         .cb_devmap      = nodev,
 414         .cb_mmap        = nodev,
 415         .cb_segmap      = nodev,
 416         .cb_chpoll      = nochpoll,
 417         .cb_prop_op     = ddi_prop_op,
 418         .cb_str         = 0,
 419         .cb_flag        = D_NEW | D_MP,
 420         .cb_rev         = CB_REV,
 421         .cb_aread       = nodev,
 422         .cb_awrite      = nodev
 423 };
 424 
 425 static struct dev_ops nvme_dev_ops = {
 426         .devo_rev       = DEVO_REV,
 427         .devo_refcnt    = 0,
 428         .devo_getinfo   = ddi_no_info,
 429         .devo_identify  = nulldev,
 430         .devo_probe     = nulldev,
 431         .devo_attach    = nvme_attach,
 432         .devo_detach    = nvme_detach,
 433         .devo_reset     = nodev,
 434         .devo_cb_ops    = &nvme_cb_ops,
 435         .devo_bus_ops   = NULL,
 436         .devo_power     = NULL,
 437         .devo_quiesce   = nvme_quiesce,
 438 };
 439 
 440 static struct modldrv nvme_modldrv = {
 441         .drv_modops     = &mod_driverops,
 442         .drv_linkinfo   = "NVMe v1.1b",
 443         .drv_dev_ops    = &nvme_dev_ops
 444 };
 445 
 446 static struct modlinkage nvme_modlinkage = {
 447         .ml_rev         = MODREV_1,
 448         .ml_linkage     = { &nvme_modldrv, NULL }
 449 };
 450 
 451 static bd_ops_t nvme_bd_ops = {
 452         .o_version      = BD_OPS_VERSION_0,
 453         .o_drive_info   = nvme_bd_driveinfo,
 454         .o_media_info   = nvme_bd_mediainfo,
 455         .o_devid_init   = nvme_bd_devid,
 456         .o_sync_cache   = nvme_bd_sync,
 457         .o_read         = nvme_bd_read,
 458         .o_write        = nvme_bd_write,
 459 };
 460 
 461 int
 462 _init(void)
 463 {
 464         int error;
 465 
 466         error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
 467         if (error != DDI_SUCCESS)
 468                 return (error);
 469 
 470         nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
 471             sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
 472 
 473         bd_mod_init(&nvme_dev_ops);
 474 
 475         error = mod_install(&nvme_modlinkage);
 476         if (error != DDI_SUCCESS) {
 477                 ddi_soft_state_fini(&nvme_state);
 478                 bd_mod_fini(&nvme_dev_ops);
 479         }
 480 
 481         return (error);
 482 }
 483 
 484 int
 485 _fini(void)
 486 {
 487         int error;
 488 
 489         error = mod_remove(&nvme_modlinkage);
 490         if (error == DDI_SUCCESS) {
 491                 ddi_soft_state_fini(&nvme_state);
 492                 kmem_cache_destroy(nvme_cmd_cache);
 493                 bd_mod_fini(&nvme_dev_ops);
 494         }
 495 
 496         return (error);
 497 }
 498 
 499 int
 500 _info(struct modinfo *modinfop)
 501 {
 502         return (mod_info(&nvme_modlinkage, modinfop));
 503 }
 504 
 505 static inline void
 506 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
 507 {
 508         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 509 
 510         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 511         ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
 512 }
 513 
 514 static inline void
 515 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
 516 {
 517         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 518 
 519         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 520         ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
 521 }
 522 
 523 static inline uint64_t
 524 nvme_get64(nvme_t *nvme, uintptr_t reg)
 525 {
 526         uint64_t val;
 527 
 528         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 529 
 530         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 531         val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
 532 
 533         return (val);
 534 }
 535 
 536 static inline uint32_t
 537 nvme_get32(nvme_t *nvme, uintptr_t reg)
 538 {
 539         uint32_t val;
 540 
 541         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 542 
 543         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 544         val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
 545 
 546         return (val);
 547 }
 548 
 549 static boolean_t
 550 nvme_check_regs_hdl(nvme_t *nvme)
 551 {
 552         ddi_fm_error_t error;
 553 
 554         ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
 555 
 556         if (error.fme_status != DDI_FM_OK)
 557                 return (B_TRUE);
 558 
 559         return (B_FALSE);
 560 }
 561 
 562 static boolean_t
 563 nvme_check_dma_hdl(nvme_dma_t *dma)
 564 {
 565         ddi_fm_error_t error;
 566 
 567         if (dma == NULL)
 568                 return (B_FALSE);
 569 
 570         ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
 571 
 572         if (error.fme_status != DDI_FM_OK)
 573                 return (B_TRUE);
 574 
 575         return (B_FALSE);
 576 }
 577 
 578 static void
 579 nvme_free_dma_common(nvme_dma_t *dma)
 580 {
 581         if (dma->nd_dmah != NULL)
 582                 (void) ddi_dma_unbind_handle(dma->nd_dmah);
 583         if (dma->nd_acch != NULL)
 584                 ddi_dma_mem_free(&dma->nd_acch);
 585         if (dma->nd_dmah != NULL)
 586                 ddi_dma_free_handle(&dma->nd_dmah);
 587 }
 588 
 589 static void
 590 nvme_free_dma(nvme_dma_t *dma)
 591 {
 592         nvme_free_dma_common(dma);
 593         kmem_free(dma, sizeof (*dma));
 594 }
 595 
 596 /* ARGSUSED */
 597 static void
 598 nvme_prp_dma_destructor(void *buf, void *private)
 599 {
 600         nvme_dma_t *dma = (nvme_dma_t *)buf;
 601 
 602         nvme_free_dma_common(dma);
 603 }
 604 
 605 static int
 606 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
 607     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
 608 {
 609         if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
 610             &dma->nd_dmah) != DDI_SUCCESS) {
 611                 /*
 612                  * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
 613                  * the only other possible error is DDI_DMA_BADATTR which
 614                  * indicates a driver bug which should cause a panic.
 615                  */
 616                 dev_err(nvme->n_dip, CE_PANIC,
 617                     "!failed to get DMA handle, check DMA attributes");
 618                 return (DDI_FAILURE);
 619         }
 620 
 621         /*
 622          * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
 623          * or the flags are conflicting, which isn't the case here.
 624          */
 625         (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
 626             DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
 627             &dma->nd_len, &dma->nd_acch);
 628 
 629         if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
 630             dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
 631             &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
 632                 dev_err(nvme->n_dip, CE_WARN,
 633                     "!failed to bind DMA memory");
 634                 atomic_inc_32(&nvme->n_dma_bind_err);
 635                 nvme_free_dma_common(dma);
 636                 return (DDI_FAILURE);
 637         }
 638 
 639         return (DDI_SUCCESS);
 640 }
 641 
 642 static int
 643 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
 644     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
 645 {
 646         nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
 647 
 648         if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
 649             DDI_SUCCESS) {
 650                 *ret = NULL;
 651                 kmem_free(dma, sizeof (nvme_dma_t));
 652                 return (DDI_FAILURE);
 653         }
 654 
 655         bzero(dma->nd_memp, dma->nd_len);
 656 
 657         *ret = dma;
 658         return (DDI_SUCCESS);
 659 }
 660 
 661 /* ARGSUSED */
 662 static int
 663 nvme_prp_dma_constructor(void *buf, void *private, int flags)
 664 {
 665         nvme_dma_t *dma = (nvme_dma_t *)buf;
 666         nvme_t *nvme = (nvme_t *)private;
 667 
 668         dma->nd_dmah = NULL;
 669         dma->nd_acch = NULL;
 670 
 671         if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
 672             DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
 673                 return (-1);
 674         }
 675 
 676         ASSERT(dma->nd_ncookie == 1);
 677 
 678         dma->nd_cached = B_TRUE;
 679 
 680         return (0);
 681 }
 682 
 683 static int
 684 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
 685     uint_t flags, nvme_dma_t **dma)
 686 {
 687         uint32_t len = nentry * qe_len;
 688         ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
 689 
 690         len = roundup(len, nvme->n_pagesize);
 691 
 692         q_dma_attr.dma_attr_minxfer = len;
 693 
 694         if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
 695             != DDI_SUCCESS) {
 696                 dev_err(nvme->n_dip, CE_WARN,
 697                     "!failed to get DMA memory for queue");
 698                 goto fail;
 699         }
 700 
 701         if ((*dma)->nd_ncookie != 1) {
 702                 dev_err(nvme->n_dip, CE_WARN,
 703                     "!got too many cookies for queue DMA");
 704                 goto fail;
 705         }
 706 
 707         return (DDI_SUCCESS);
 708 
 709 fail:
 710         if (*dma) {
 711                 nvme_free_dma(*dma);
 712                 *dma = NULL;
 713         }
 714 
 715         return (DDI_FAILURE);
 716 }
 717 
 718 static void
 719 nvme_free_qpair(nvme_qpair_t *qp)
 720 {
 721         int i;
 722 
 723         mutex_destroy(&qp->nq_mutex);
 724 
 725         if (qp->nq_sqdma != NULL)
 726                 nvme_free_dma(qp->nq_sqdma);
 727         if (qp->nq_cqdma != NULL)
 728                 nvme_free_dma(qp->nq_cqdma);
 729 
 730         if (qp->nq_active_cmds > 0)
 731                 for (i = 0; i != qp->nq_nentry; i++)
 732                         if (qp->nq_cmd[i] != NULL)
 733                                 nvme_free_cmd(qp->nq_cmd[i]);
 734 
 735         if (qp->nq_cmd != NULL)
 736                 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
 737 
 738         kmem_free(qp, sizeof (nvme_qpair_t));
 739 }
 740 
 741 static int
 742 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
 743     int idx)
 744 {
 745         nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
 746 
 747         mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
 748             DDI_INTR_PRI(nvme->n_intr_pri));
 749 
 750         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
 751             DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
 752                 goto fail;
 753 
 754         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
 755             DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
 756                 goto fail;
 757 
 758         qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
 759         qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
 760         qp->nq_nentry = nentry;
 761 
 762         qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
 763         qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
 764 
 765         qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
 766         qp->nq_next_cmd = 0;
 767 
 768         *nqp = qp;
 769         return (DDI_SUCCESS);
 770 
 771 fail:
 772         nvme_free_qpair(qp);
 773         *nqp = NULL;
 774 
 775         return (DDI_FAILURE);
 776 }
 777 
 778 static nvme_cmd_t *
 779 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
 780 {
 781         nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
 782 
 783         if (cmd == NULL)
 784                 return (cmd);
 785 
 786         bzero(cmd, sizeof (nvme_cmd_t));
 787 
 788         cmd->nc_nvme = nvme;
 789 
 790         mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
 791             DDI_INTR_PRI(nvme->n_intr_pri));
 792         cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
 793 
 794         return (cmd);
 795 }
 796 
 797 static void
 798 nvme_free_cmd(nvme_cmd_t *cmd)
 799 {
 800         if (cmd->nc_dma) {
 801                 if (cmd->nc_dma->nd_cached)
 802                         kmem_cache_free(cmd->nc_nvme->n_prp_cache,
 803                             cmd->nc_dma);
 804                 else
 805                         nvme_free_dma(cmd->nc_dma);
 806                 cmd->nc_dma = NULL;
 807         }
 808 
 809         cv_destroy(&cmd->nc_cv);
 810         mutex_destroy(&cmd->nc_mutex);
 811 
 812         kmem_cache_free(nvme_cmd_cache, cmd);
 813 }
 814 
 815 static int
 816 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 817 {
 818         nvme_reg_sqtdbl_t tail = { 0 };
 819 
 820         mutex_enter(&qp->nq_mutex);
 821 
 822         if (qp->nq_active_cmds == qp->nq_nentry) {
 823                 mutex_exit(&qp->nq_mutex);
 824                 return (DDI_FAILURE);
 825         }
 826 
 827         cmd->nc_completed = B_FALSE;
 828 
 829         /*
 830          * Try to insert the cmd into the active cmd array at the nq_next_cmd
 831          * slot. If the slot is already occupied advance to the next slot and
 832          * try again. This can happen for long running commands like async event
 833          * requests.
 834          */
 835         while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
 836                 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 837         qp->nq_cmd[qp->nq_next_cmd] = cmd;
 838 
 839         qp->nq_active_cmds++;
 840 
 841         cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
 842         bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
 843         (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
 844             sizeof (nvme_sqe_t) * qp->nq_sqtail,
 845             sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
 846         qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 847 
 848         tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
 849         nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
 850 
 851         mutex_exit(&qp->nq_mutex);
 852         return (DDI_SUCCESS);
 853 }
 854 
 855 static nvme_cmd_t *
 856 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
 857 {
 858         nvme_reg_cqhdbl_t head = { 0 };
 859 
 860         nvme_cqe_t *cqe;
 861         nvme_cmd_t *cmd;
 862 
 863         (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
 864             sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
 865 
 866         mutex_enter(&qp->nq_mutex);
 867         cqe = &qp->nq_cq[qp->nq_cqhead];
 868 
 869         /* Check phase tag of CQE. Hardware inverts it for new entries. */
 870         if (cqe->cqe_sf.sf_p == qp->nq_phase) {
 871                 mutex_exit(&qp->nq_mutex);
 872                 return (NULL);
 873         }
 874 
 875         ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
 876         ASSERT(cqe->cqe_cid < qp->nq_nentry);
 877 
 878         cmd = qp->nq_cmd[cqe->cqe_cid];
 879         qp->nq_cmd[cqe->cqe_cid] = NULL;
 880         qp->nq_active_cmds--;
 881 
 882         ASSERT(cmd != NULL);
 883         ASSERT(cmd->nc_nvme == nvme);
 884         ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
 885         ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
 886         bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
 887 
 888         qp->nq_sqhead = cqe->cqe_sqhd;
 889 
 890         head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
 891 
 892         /* Toggle phase on wrap-around. */
 893         if (qp->nq_cqhead == 0)
 894                 qp->nq_phase = qp->nq_phase ? 0 : 1;
 895 
 896         nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
 897         mutex_exit(&qp->nq_mutex);
 898 
 899         return (cmd);
 900 }
 901 
 902 static int
 903 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
 904 {
 905         nvme_cqe_t *cqe = &cmd->nc_cqe;
 906 
 907         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 908             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 909             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 910             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 911             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 912 
 913         if (cmd->nc_xfer != NULL)
 914                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 915 
 916         if (cmd->nc_nvme->n_strict_version) {
 917                 cmd->nc_nvme->n_dead = B_TRUE;
 918                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
 919         }
 920 
 921         return (EIO);
 922 }
 923 
 924 static int
 925 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
 926 {
 927         nvme_cqe_t *cqe = &cmd->nc_cqe;
 928 
 929         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 930             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 931             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 932             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 933             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 934         if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
 935                 cmd->nc_nvme->n_dead = B_TRUE;
 936                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
 937         }
 938 
 939         return (EIO);
 940 }
 941 
 942 static int
 943 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
 944 {
 945         nvme_cqe_t *cqe = &cmd->nc_cqe;
 946 
 947         switch (cqe->cqe_sf.sf_sc) {
 948         case NVME_CQE_SC_INT_NVM_WRITE:
 949                 /* write fail */
 950                 /* TODO: post ereport */
 951                 if (cmd->nc_xfer != NULL)
 952                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
 953                 return (EIO);
 954 
 955         case NVME_CQE_SC_INT_NVM_READ:
 956                 /* read fail */
 957                 /* TODO: post ereport */
 958                 if (cmd->nc_xfer != NULL)
 959                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
 960                 return (EIO);
 961 
 962         default:
 963                 return (nvme_check_unknown_cmd_status(cmd));
 964         }
 965 }
 966 
 967 static int
 968 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
 969 {
 970         nvme_cqe_t *cqe = &cmd->nc_cqe;
 971 
 972         switch (cqe->cqe_sf.sf_sc) {
 973         case NVME_CQE_SC_GEN_SUCCESS:
 974                 return (0);
 975 
 976         /*
 977          * Errors indicating a bug in the driver should cause a panic.
 978          */
 979         case NVME_CQE_SC_GEN_INV_OPC:
 980                 /* Invalid Command Opcode */
 981                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 982                     "invalid opcode in cmd %p", (void *)cmd);
 983                 return (0);
 984 
 985         case NVME_CQE_SC_GEN_INV_FLD:
 986                 /* Invalid Field in Command */
 987                 if (!cmd->nc_dontpanic)
 988                         dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
 989                             "programming error: invalid field in cmd %p",
 990                             (void *)cmd);
 991                 return (EIO);
 992 
 993         case NVME_CQE_SC_GEN_ID_CNFL:
 994                 /* Command ID Conflict */
 995                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
 996                     "cmd ID conflict in cmd %p", (void *)cmd);
 997                 return (0);
 998 
 999         case NVME_CQE_SC_GEN_INV_NS:
1000                 /* Invalid Namespace or Format */
1001                 if (!cmd->nc_dontpanic)
1002                         dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1003                             "programming error: " "invalid NS/format in cmd %p",
1004                             (void *)cmd);
1005                 return (EINVAL);
1006 
1007         case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1008                 /* LBA Out Of Range */
1009                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1010                     "LBA out of range in cmd %p", (void *)cmd);
1011                 return (0);
1012 
1013         /*
1014          * Non-fatal errors, handle gracefully.
1015          */
1016         case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1017                 /* Data Transfer Error (DMA) */
1018                 /* TODO: post ereport */
1019                 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1020                 if (cmd->nc_xfer != NULL)
1021                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1022                 return (EIO);
1023 
1024         case NVME_CQE_SC_GEN_INTERNAL_ERR:
1025                 /*
1026                  * Internal Error. The spec (v1.0, section 4.5.1.2) says
1027                  * detailed error information is returned as async event,
1028                  * so we pretty much ignore the error here and handle it
1029                  * in the async event handler.
1030                  */
1031                 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1032                 if (cmd->nc_xfer != NULL)
1033                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1034                 return (EIO);
1035 
1036         case NVME_CQE_SC_GEN_ABORT_REQUEST:
1037                 /*
1038                  * Command Abort Requested. This normally happens only when a
1039                  * command times out.
1040                  */
1041                 /* TODO: post ereport or change blkdev to handle this? */
1042                 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1043                 return (ECANCELED);
1044 
1045         case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1046                 /* Command Aborted due to Power Loss Notification */
1047                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1048                 cmd->nc_nvme->n_dead = B_TRUE;
1049                 return (EIO);
1050 
1051         case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1052                 /* Command Aborted due to SQ Deletion */
1053                 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1054                 return (EIO);
1055 
1056         case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1057                 /* Capacity Exceeded */
1058                 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1059                 if (cmd->nc_xfer != NULL)
1060                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1061                 return (EIO);
1062 
1063         case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1064                 /* Namespace Not Ready */
1065                 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1066                 if (cmd->nc_xfer != NULL)
1067                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1068                 return (EIO);
1069 
1070         default:
1071                 return (nvme_check_unknown_cmd_status(cmd));
1072         }
1073 }
1074 
1075 static int
1076 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1077 {
1078         nvme_cqe_t *cqe = &cmd->nc_cqe;
1079 
1080         switch (cqe->cqe_sf.sf_sc) {
1081         case NVME_CQE_SC_SPC_INV_CQ:
1082                 /* Completion Queue Invalid */
1083                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1084                 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1085                 return (EINVAL);
1086 
1087         case NVME_CQE_SC_SPC_INV_QID:
1088                 /* Invalid Queue Identifier */
1089                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1090                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1091                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1092                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1093                 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1094                 return (EINVAL);
1095 
1096         case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1097                 /* Max Queue Size Exceeded */
1098                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1099                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1100                 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1101                 return (EINVAL);
1102 
1103         case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1104                 /* Abort Command Limit Exceeded */
1105                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1106                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1107                     "abort command limit exceeded in cmd %p", (void *)cmd);
1108                 return (0);
1109 
1110         case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1111                 /* Async Event Request Limit Exceeded */
1112                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1113                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1114                     "async event request limit exceeded in cmd %p",
1115                     (void *)cmd);
1116                 return (0);
1117 
1118         case NVME_CQE_SC_SPC_INV_INT_VECT:
1119                 /* Invalid Interrupt Vector */
1120                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1121                 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1122                 return (EINVAL);
1123 
1124         case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1125                 /* Invalid Log Page */
1126                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1127                 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1128                 return (EINVAL);
1129 
1130         case NVME_CQE_SC_SPC_INV_FORMAT:
1131                 /* Invalid Format */
1132                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1133                 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1134                 if (cmd->nc_xfer != NULL)
1135                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1136                 return (EINVAL);
1137 
1138         case NVME_CQE_SC_SPC_INV_Q_DEL:
1139                 /* Invalid Queue Deletion */
1140                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1141                 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1142                 return (EINVAL);
1143 
1144         case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1145                 /* Conflicting Attributes */
1146                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1147                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1148                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1149                 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1150                 if (cmd->nc_xfer != NULL)
1151                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1152                 return (EINVAL);
1153 
1154         case NVME_CQE_SC_SPC_NVM_INV_PROT:
1155                 /* Invalid Protection Information */
1156                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1157                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1158                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1159                 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1160                 if (cmd->nc_xfer != NULL)
1161                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1162                 return (EINVAL);
1163 
1164         case NVME_CQE_SC_SPC_NVM_READONLY:
1165                 /* Write to Read Only Range */
1166                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1167                 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1168                 if (cmd->nc_xfer != NULL)
1169                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1170                 return (EROFS);
1171 
1172         default:
1173                 return (nvme_check_unknown_cmd_status(cmd));
1174         }
1175 }
1176 
1177 static inline int
1178 nvme_check_cmd_status(nvme_cmd_t *cmd)
1179 {
1180         nvme_cqe_t *cqe = &cmd->nc_cqe;
1181 
1182         /* take a shortcut if everything is alright */
1183         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1184             cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1185                 return (0);
1186 
1187         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1188                 return (nvme_check_generic_cmd_status(cmd));
1189         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1190                 return (nvme_check_specific_cmd_status(cmd));
1191         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1192                 return (nvme_check_integrity_cmd_status(cmd));
1193         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1194                 return (nvme_check_vendor_cmd_status(cmd));
1195 
1196         return (nvme_check_unknown_cmd_status(cmd));
1197 }
1198 
1199 /*
1200  * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1201  *
1202  * This functions takes care of cleaning up aborted commands. The command
1203  * status is checked to catch any fatal errors.
1204  */
1205 static void
1206 nvme_abort_cmd_cb(void *arg)
1207 {
1208         nvme_cmd_t *cmd = arg;
1209 
1210         /*
1211          * Grab the command mutex. Once we have it we hold the last reference
1212          * to the command and can safely free it.
1213          */
1214         mutex_enter(&cmd->nc_mutex);
1215         (void) nvme_check_cmd_status(cmd);
1216         mutex_exit(&cmd->nc_mutex);
1217 
1218         nvme_free_cmd(cmd);
1219 }
1220 
1221 static void
1222 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1223 {
1224         nvme_t *nvme = abort_cmd->nc_nvme;
1225         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1226         nvme_abort_cmd_t ac = { 0 };
1227 
1228         sema_p(&nvme->n_abort_sema);
1229 
1230         ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1231         ac.b.ac_sqid = abort_cmd->nc_sqid;
1232 
1233         /*
1234          * Drop the mutex of the aborted command. From this point on
1235          * we must assume that the abort callback has freed the command.
1236          */
1237         mutex_exit(&abort_cmd->nc_mutex);
1238 
1239         cmd->nc_sqid = 0;
1240         cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1241         cmd->nc_callback = nvme_wakeup_cmd;
1242         cmd->nc_sqe.sqe_cdw10 = ac.r;
1243 
1244         /*
1245          * Send the ABORT to the hardware. The ABORT command will return _after_
1246          * the aborted command has completed (aborted or otherwise).
1247          */
1248         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1249                 sema_v(&nvme->n_abort_sema);
1250                 dev_err(nvme->n_dip, CE_WARN,
1251                     "!nvme_admin_cmd failed for ABORT");
1252                 atomic_inc_32(&nvme->n_abort_failed);
1253                 return;
1254         }
1255         sema_v(&nvme->n_abort_sema);
1256 
1257         if (nvme_check_cmd_status(cmd)) {
1258                 dev_err(nvme->n_dip, CE_WARN,
1259                     "!ABORT failed with sct = %x, sc = %x",
1260                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1261                 atomic_inc_32(&nvme->n_abort_failed);
1262         } else {
1263                 atomic_inc_32(&nvme->n_cmd_aborted);
1264         }
1265 
1266         nvme_free_cmd(cmd);
1267 }
1268 
1269 /*
1270  * nvme_wait_cmd -- wait for command completion or timeout
1271  *
1272  * Returns B_TRUE if the command completed normally.
1273  *
1274  * Returns B_FALSE if the command timed out and an abort was attempted. The
1275  * command mutex will be dropped and the command must be considered freed. The
1276  * freeing of the command is normally done by the abort command callback.
1277  *
1278  * In case of a serious error or a timeout of the abort command the hardware
1279  * will be declared dead and FMA will be notified.
1280  */
1281 static boolean_t
1282 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1283 {
1284         clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1285         nvme_t *nvme = cmd->nc_nvme;
1286         nvme_reg_csts_t csts;
1287 
1288         ASSERT(mutex_owned(&cmd->nc_mutex));
1289 
1290         while (!cmd->nc_completed) {
1291                 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1292                         break;
1293         }
1294 
1295         if (cmd->nc_completed)
1296                 return (B_TRUE);
1297 
1298         /*
1299          * The command timed out. Change the callback to the cleanup function.
1300          */
1301         cmd->nc_callback = nvme_abort_cmd_cb;
1302 
1303         /*
1304          * Check controller for fatal status, any errors associated with the
1305          * register or DMA handle, or for a double timeout (abort command timed
1306          * out). If necessary log a warning and call FMA.
1307          */
1308         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1309         dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1310             "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1311         atomic_inc_32(&nvme->n_cmd_timeout);
1312 
1313         if (csts.b.csts_cfs ||
1314             nvme_check_regs_hdl(nvme) ||
1315             nvme_check_dma_hdl(cmd->nc_dma) ||
1316             cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1317                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1318                 nvme->n_dead = B_TRUE;
1319                 mutex_exit(&cmd->nc_mutex);
1320         } else {
1321                 /*
1322                  * Try to abort the command. The command mutex is released by
1323                  * nvme_abort_cmd().
1324                  * If the abort succeeds it will have freed the aborted command.
1325                  * If the abort fails for other reasons we must assume that the
1326                  * command may complete at any time, and the callback will free
1327                  * it for us.
1328                  */
1329                 nvme_abort_cmd(cmd);
1330         }
1331 
1332         return (B_FALSE);
1333 }
1334 
1335 static void
1336 nvme_wakeup_cmd(void *arg)
1337 {
1338         nvme_cmd_t *cmd = arg;
1339 
1340         mutex_enter(&cmd->nc_mutex);
1341         /*
1342          * There is a slight chance that this command completed shortly after
1343          * the timeout was hit in nvme_wait_cmd() but before the callback was
1344          * changed. Catch that case here and clean up accordingly.
1345          */
1346         if (cmd->nc_callback == nvme_abort_cmd_cb) {
1347                 mutex_exit(&cmd->nc_mutex);
1348                 nvme_abort_cmd_cb(cmd);
1349                 return;
1350         }
1351 
1352         cmd->nc_completed = B_TRUE;
1353         cv_signal(&cmd->nc_cv);
1354         mutex_exit(&cmd->nc_mutex);
1355 }
1356 
1357 static void
1358 nvme_async_event_task(void *arg)
1359 {
1360         nvme_cmd_t *cmd = arg;
1361         nvme_t *nvme = cmd->nc_nvme;
1362         nvme_error_log_entry_t *error_log = NULL;
1363         nvme_health_log_t *health_log = NULL;
1364         size_t logsize = 0;
1365         nvme_async_event_t event;
1366         int ret;
1367 
1368         /*
1369          * Check for errors associated with the async request itself. The only
1370          * command-specific error is "async event limit exceeded", which
1371          * indicates a programming error in the driver and causes a panic in
1372          * nvme_check_cmd_status().
1373          *
1374          * Other possible errors are various scenarios where the async request
1375          * was aborted, or internal errors in the device. Internal errors are
1376          * reported to FMA, the command aborts need no special handling here.
1377          */
1378         if (nvme_check_cmd_status(cmd)) {
1379                 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1380                     "!async event request returned failure, sct = %x, "
1381                     "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1382                     cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1383                     cmd->nc_cqe.cqe_sf.sf_m);
1384 
1385                 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1386                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1387                         cmd->nc_nvme->n_dead = B_TRUE;
1388                         ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1389                             DDI_SERVICE_LOST);
1390                 }
1391                 nvme_free_cmd(cmd);
1392                 return;
1393         }
1394 
1395 
1396         event.r = cmd->nc_cqe.cqe_dw0;
1397 
1398         /* Clear CQE and re-submit the async request. */
1399         bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1400         ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1401 
1402         if (ret != DDI_SUCCESS) {
1403                 dev_err(nvme->n_dip, CE_WARN,
1404                     "!failed to resubmit async event request");
1405                 atomic_inc_32(&nvme->n_async_resubmit_failed);
1406                 nvme_free_cmd(cmd);
1407         }
1408 
1409         switch (event.b.ae_type) {
1410         case NVME_ASYNC_TYPE_ERROR:
1411                 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1412                         (void) nvme_get_logpage(nvme, (void **)&error_log,
1413                             &logsize, event.b.ae_logpage);
1414                 } else {
1415                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1416                             "async event reply: %d", event.b.ae_logpage);
1417                         atomic_inc_32(&nvme->n_wrong_logpage);
1418                 }
1419 
1420                 switch (event.b.ae_info) {
1421                 case NVME_ASYNC_ERROR_INV_SQ:
1422                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1423                             "invalid submission queue");
1424                         return;
1425 
1426                 case NVME_ASYNC_ERROR_INV_DBL:
1427                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1428                             "invalid doorbell write value");
1429                         return;
1430 
1431                 case NVME_ASYNC_ERROR_DIAGFAIL:
1432                         dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1433                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1434                         nvme->n_dead = B_TRUE;
1435                         atomic_inc_32(&nvme->n_diagfail_event);
1436                         break;
1437 
1438                 case NVME_ASYNC_ERROR_PERSISTENT:
1439                         dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1440                             "device error");
1441                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1442                         nvme->n_dead = B_TRUE;
1443                         atomic_inc_32(&nvme->n_persistent_event);
1444                         break;
1445 
1446                 case NVME_ASYNC_ERROR_TRANSIENT:
1447                         dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1448                             "device error");
1449                         /* TODO: send ereport */
1450                         atomic_inc_32(&nvme->n_transient_event);
1451                         break;
1452 
1453                 case NVME_ASYNC_ERROR_FW_LOAD:
1454                         dev_err(nvme->n_dip, CE_WARN,
1455                             "!firmware image load error");
1456                         atomic_inc_32(&nvme->n_fw_load_event);
1457                         break;
1458                 }
1459                 break;
1460 
1461         case NVME_ASYNC_TYPE_HEALTH:
1462                 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1463                         (void) nvme_get_logpage(nvme, (void **)&health_log,
1464                             &logsize, event.b.ae_logpage, -1);
1465                 } else {
1466                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1467                             "async event reply: %d", event.b.ae_logpage);
1468                         atomic_inc_32(&nvme->n_wrong_logpage);
1469                 }
1470 
1471                 switch (event.b.ae_info) {
1472                 case NVME_ASYNC_HEALTH_RELIABILITY:
1473                         dev_err(nvme->n_dip, CE_WARN,
1474                             "!device reliability compromised");
1475                         /* TODO: send ereport */
1476                         atomic_inc_32(&nvme->n_reliability_event);
1477                         break;
1478 
1479                 case NVME_ASYNC_HEALTH_TEMPERATURE:
1480                         dev_err(nvme->n_dip, CE_WARN,
1481                             "!temperature above threshold");
1482                         /* TODO: send ereport */
1483                         atomic_inc_32(&nvme->n_temperature_event);
1484                         break;
1485 
1486                 case NVME_ASYNC_HEALTH_SPARE:
1487                         dev_err(nvme->n_dip, CE_WARN,
1488                             "!spare space below threshold");
1489                         /* TODO: send ereport */
1490                         atomic_inc_32(&nvme->n_spare_event);
1491                         break;
1492                 }
1493                 break;
1494 
1495         case NVME_ASYNC_TYPE_VENDOR:
1496                 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1497                     "received, info = %x, logpage = %x", event.b.ae_info,
1498                     event.b.ae_logpage);
1499                 atomic_inc_32(&nvme->n_vendor_event);
1500                 break;
1501 
1502         default:
1503                 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1504                     "type = %x, info = %x, logpage = %x", event.b.ae_type,
1505                     event.b.ae_info, event.b.ae_logpage);
1506                 atomic_inc_32(&nvme->n_unknown_event);
1507                 break;
1508         }
1509 
1510         if (error_log)
1511                 kmem_free(error_log, logsize);
1512 
1513         if (health_log)
1514                 kmem_free(health_log, logsize);
1515 }
1516 
1517 static int
1518 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1519 {
1520         int ret;
1521 
1522         mutex_enter(&cmd->nc_mutex);
1523         ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1524 
1525         if (ret != DDI_SUCCESS) {
1526                 mutex_exit(&cmd->nc_mutex);
1527                 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1528                     "!nvme_submit_cmd failed");
1529                 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1530                 nvme_free_cmd(cmd);
1531                 return (DDI_FAILURE);
1532         }
1533 
1534         if (nvme_wait_cmd(cmd, sec) == B_FALSE) {
1535                 /*
1536                  * The command timed out. An abort command was posted that
1537                  * will take care of the cleanup.
1538                  */
1539                 return (DDI_FAILURE);
1540         }
1541         mutex_exit(&cmd->nc_mutex);
1542 
1543         return (DDI_SUCCESS);
1544 }
1545 
1546 static int
1547 nvme_async_event(nvme_t *nvme)
1548 {
1549         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1550         int ret;
1551 
1552         cmd->nc_sqid = 0;
1553         cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1554         cmd->nc_callback = nvme_async_event_task;
1555 
1556         ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1557 
1558         if (ret != DDI_SUCCESS) {
1559                 dev_err(nvme->n_dip, CE_WARN,
1560                     "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1561                 nvme_free_cmd(cmd);
1562                 return (DDI_FAILURE);
1563         }
1564 
1565         return (DDI_SUCCESS);
1566 }
1567 
1568 static int
1569 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1570     uint8_t pi, boolean_t pil, uint8_t ses)
1571 {
1572         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1573         nvme_format_nvm_t format_nvm = { 0 };
1574         int ret;
1575 
1576         format_nvm.b.fm_lbaf = lbaf & 0xf;
1577         format_nvm.b.fm_ms = ms ? 1 : 0;
1578         format_nvm.b.fm_pi = pi & 0x7;
1579         format_nvm.b.fm_pil = pil ? 1 : 0;
1580         format_nvm.b.fm_ses = ses & 0x7;
1581 
1582         cmd->nc_sqid = 0;
1583         cmd->nc_callback = nvme_wakeup_cmd;
1584         cmd->nc_sqe.sqe_nsid = nsid;
1585         cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1586         cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1587 
1588         /*
1589          * Some devices like Samsung SM951 don't allow formatting of all
1590          * namespaces in one command. Handle that gracefully.
1591          */
1592         if (nsid == (uint32_t)-1)
1593                 cmd->nc_dontpanic = B_TRUE;
1594 
1595         if ((ret = nvme_admin_cmd(cmd, nvme_format_cmd_timeout))
1596             != DDI_SUCCESS) {
1597                 dev_err(nvme->n_dip, CE_WARN,
1598                     "!nvme_admin_cmd failed for FORMAT NVM");
1599                 return (EIO);
1600         }
1601 
1602         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1603                 dev_err(nvme->n_dip, CE_WARN,
1604                     "!FORMAT failed with sct = %x, sc = %x",
1605                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1606         }
1607 
1608         nvme_free_cmd(cmd);
1609         return (ret);
1610 }
1611 
1612 static int
1613 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1614     ...)
1615 {
1616         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1617         nvme_getlogpage_t getlogpage = { 0 };
1618         va_list ap;
1619         int ret = DDI_FAILURE;
1620 
1621         va_start(ap, logpage);
1622 
1623         cmd->nc_sqid = 0;
1624         cmd->nc_callback = nvme_wakeup_cmd;
1625         cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1626 
1627         getlogpage.b.lp_lid = logpage;
1628 
1629         switch (logpage) {
1630         case NVME_LOGPAGE_ERROR:
1631                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1632                 /*
1633                  * The GET LOG PAGE command can use at most 2 pages to return
1634                  * data, PRP lists are not supported.
1635                  */
1636                 *bufsize = MIN(2 * nvme->n_pagesize,
1637                     nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1638                 break;
1639 
1640         case NVME_LOGPAGE_HEALTH:
1641                 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1642                 *bufsize = sizeof (nvme_health_log_t);
1643                 break;
1644 
1645         case NVME_LOGPAGE_FWSLOT:
1646                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1647                 *bufsize = sizeof (nvme_fwslot_log_t);
1648                 break;
1649 
1650         default:
1651                 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1652                     logpage);
1653                 atomic_inc_32(&nvme->n_unknown_logpage);
1654                 goto fail;
1655         }
1656 
1657         va_end(ap);
1658 
1659         getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1660 
1661         cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1662 
1663         if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1664             DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1665                 dev_err(nvme->n_dip, CE_WARN,
1666                     "!nvme_zalloc_dma failed for GET LOG PAGE");
1667                 goto fail;
1668         }
1669 
1670         if (cmd->nc_dma->nd_ncookie > 2) {
1671                 dev_err(nvme->n_dip, CE_WARN,
1672                     "!too many DMA cookies for GET LOG PAGE");
1673                 atomic_inc_32(&nvme->n_too_many_cookies);
1674                 goto fail;
1675         }
1676 
1677         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1678         if (cmd->nc_dma->nd_ncookie > 1) {
1679                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1680                     &cmd->nc_dma->nd_cookie);
1681                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1682                     cmd->nc_dma->nd_cookie.dmac_laddress;
1683         }
1684 
1685         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1686                 dev_err(nvme->n_dip, CE_WARN,
1687                     "!nvme_admin_cmd failed for GET LOG PAGE");
1688                 return (ret);
1689         }
1690 
1691         if (nvme_check_cmd_status(cmd)) {
1692                 dev_err(nvme->n_dip, CE_WARN,
1693                     "!GET LOG PAGE failed with sct = %x, sc = %x",
1694                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1695                 goto fail;
1696         }
1697 
1698         *buf = kmem_alloc(*bufsize, KM_SLEEP);
1699         bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1700 
1701         ret = DDI_SUCCESS;
1702 
1703 fail:
1704         nvme_free_cmd(cmd);
1705 
1706         return (ret);
1707 }
1708 
1709 static void *
1710 nvme_identify(nvme_t *nvme, uint32_t nsid)
1711 {
1712         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1713         void *buf = NULL;
1714 
1715         cmd->nc_sqid = 0;
1716         cmd->nc_callback = nvme_wakeup_cmd;
1717         cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1718         cmd->nc_sqe.sqe_nsid = nsid;
1719         cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1720 
1721         if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1722             &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1723                 dev_err(nvme->n_dip, CE_WARN,
1724                     "!nvme_zalloc_dma failed for IDENTIFY");
1725                 goto fail;
1726         }
1727 
1728         if (cmd->nc_dma->nd_ncookie > 2) {
1729                 dev_err(nvme->n_dip, CE_WARN,
1730                     "!too many DMA cookies for IDENTIFY");
1731                 atomic_inc_32(&nvme->n_too_many_cookies);
1732                 goto fail;
1733         }
1734 
1735         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1736         if (cmd->nc_dma->nd_ncookie > 1) {
1737                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1738                     &cmd->nc_dma->nd_cookie);
1739                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1740                     cmd->nc_dma->nd_cookie.dmac_laddress;
1741         }
1742 
1743         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1744                 dev_err(nvme->n_dip, CE_WARN,
1745                     "!nvme_admin_cmd failed for IDENTIFY");
1746                 return (NULL);
1747         }
1748 
1749         if (nvme_check_cmd_status(cmd)) {
1750                 dev_err(nvme->n_dip, CE_WARN,
1751                     "!IDENTIFY failed with sct = %x, sc = %x",
1752                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1753                 goto fail;
1754         }
1755 
1756         buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1757         bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1758 
1759 fail:
1760         nvme_free_cmd(cmd);
1761 
1762         return (buf);
1763 }
1764 
1765 static boolean_t
1766 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1767     uint32_t *res)
1768 {
1769         _NOTE(ARGUNUSED(nsid));
1770         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1771         boolean_t ret = B_FALSE;
1772 
1773         ASSERT(res != NULL);
1774 
1775         cmd->nc_sqid = 0;
1776         cmd->nc_callback = nvme_wakeup_cmd;
1777         cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1778         cmd->nc_sqe.sqe_cdw10 = feature;
1779         cmd->nc_sqe.sqe_cdw11 = val;
1780 
1781         switch (feature) {
1782         case NVME_FEAT_WRITE_CACHE:
1783                 if (!nvme->n_write_cache_present)
1784                         goto fail;
1785                 break;
1786 
1787         case NVME_FEAT_NQUEUES:
1788                 break;
1789 
1790         default:
1791                 goto fail;
1792         }
1793 
1794         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1795                 dev_err(nvme->n_dip, CE_WARN,
1796                     "!nvme_admin_cmd failed for SET FEATURES");
1797                 return (ret);
1798         }
1799 
1800         if (nvme_check_cmd_status(cmd)) {
1801                 dev_err(nvme->n_dip, CE_WARN,
1802                     "!SET FEATURES %d failed with sct = %x, sc = %x",
1803                     feature, cmd->nc_cqe.cqe_sf.sf_sct,
1804                     cmd->nc_cqe.cqe_sf.sf_sc);
1805                 goto fail;
1806         }
1807 
1808         *res = cmd->nc_cqe.cqe_dw0;
1809         ret = B_TRUE;
1810 
1811 fail:
1812         nvme_free_cmd(cmd);
1813         return (ret);
1814 }
1815 
1816 static boolean_t
1817 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1818     void **buf, size_t *bufsize)
1819 {
1820         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1821         boolean_t ret = B_FALSE;
1822 
1823         ASSERT(res != NULL);
1824 
1825         if (bufsize != NULL)
1826                 *bufsize = 0;
1827 
1828         cmd->nc_sqid = 0;
1829         cmd->nc_callback = nvme_wakeup_cmd;
1830         cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1831         cmd->nc_sqe.sqe_cdw10 = feature;
1832         cmd->nc_sqe.sqe_cdw11 = *res;
1833 
1834         switch (feature) {
1835         case NVME_FEAT_ARBITRATION:
1836         case NVME_FEAT_POWER_MGMT:
1837         case NVME_FEAT_TEMPERATURE:
1838         case NVME_FEAT_ERROR:
1839         case NVME_FEAT_NQUEUES:
1840         case NVME_FEAT_INTR_COAL:
1841         case NVME_FEAT_INTR_VECT:
1842         case NVME_FEAT_WRITE_ATOM:
1843         case NVME_FEAT_ASYNC_EVENT:
1844         case NVME_FEAT_PROGRESS:
1845                 break;
1846 
1847         case NVME_FEAT_WRITE_CACHE:
1848                 if (!nvme->n_write_cache_present)
1849                         goto fail;
1850                 break;
1851 
1852         case NVME_FEAT_LBA_RANGE:
1853                 if (!nvme->n_lba_range_supported)
1854                         goto fail;
1855 
1856                 /*
1857                  * The LBA Range Type feature is optional. There doesn't seem
1858                  * be a method of detecting whether it is supported other than
1859                  * using it. This will cause a "invalid field in command" error,
1860                  * which is normally considered a programming error and causes
1861                  * panic in nvme_check_generic_cmd_status().
1862                  */
1863                 cmd->nc_dontpanic = B_TRUE;
1864                 cmd->nc_sqe.sqe_nsid = nsid;
1865                 ASSERT(bufsize != NULL);
1866                 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1867 
1868                 break;
1869 
1870         case NVME_FEAT_AUTO_PST:
1871                 if (!nvme->n_auto_pst_supported)
1872                         goto fail;
1873 
1874                 ASSERT(bufsize != NULL);
1875                 *bufsize = NVME_AUTO_PST_BUFSIZE;
1876                 break;
1877 
1878         default:
1879                 goto fail;
1880         }
1881 
1882         if (bufsize != NULL && *bufsize != 0) {
1883                 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1884                     &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1885                         dev_err(nvme->n_dip, CE_WARN,
1886                             "!nvme_zalloc_dma failed for GET FEATURES");
1887                         goto fail;
1888                 }
1889 
1890                 if (cmd->nc_dma->nd_ncookie > 2) {
1891                         dev_err(nvme->n_dip, CE_WARN,
1892                             "!too many DMA cookies for GET FEATURES");
1893                         atomic_inc_32(&nvme->n_too_many_cookies);
1894                         goto fail;
1895                 }
1896 
1897                 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1898                     cmd->nc_dma->nd_cookie.dmac_laddress;
1899                 if (cmd->nc_dma->nd_ncookie > 1) {
1900                         ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1901                             &cmd->nc_dma->nd_cookie);
1902                         cmd->nc_sqe.sqe_dptr.d_prp[1] =
1903                             cmd->nc_dma->nd_cookie.dmac_laddress;
1904                 }
1905         }
1906 
1907         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1908                 dev_err(nvme->n_dip, CE_WARN,
1909                     "!nvme_admin_cmd failed for GET FEATURES");
1910                 return (ret);
1911         }
1912 
1913         if (nvme_check_cmd_status(cmd)) {
1914                 if (feature == NVME_FEAT_LBA_RANGE &&
1915                     cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1916                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1917                         nvme->n_lba_range_supported = B_FALSE;
1918                 else
1919                         dev_err(nvme->n_dip, CE_WARN,
1920                             "!GET FEATURES %d failed with sct = %x, sc = %x",
1921                             feature, cmd->nc_cqe.cqe_sf.sf_sct,
1922                             cmd->nc_cqe.cqe_sf.sf_sc);
1923                 goto fail;
1924         }
1925 
1926         if (bufsize != NULL && *bufsize != 0) {
1927                 ASSERT(buf != NULL);
1928                 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1929                 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1930         }
1931 
1932         *res = cmd->nc_cqe.cqe_dw0;
1933         ret = B_TRUE;
1934 
1935 fail:
1936         nvme_free_cmd(cmd);
1937         return (ret);
1938 }
1939 
1940 static boolean_t
1941 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1942 {
1943         nvme_write_cache_t nwc = { 0 };
1944 
1945         if (enable)
1946                 nwc.b.wc_wce = 1;
1947 
1948         if (!nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, &nwc.r))
1949                 return (B_FALSE);
1950 
1951         return (B_TRUE);
1952 }
1953 
1954 static int
1955 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1956 {
1957         nvme_nqueues_t nq = { 0 };
1958 
1959         nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1960 
1961         if (!nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r)) {
1962                 return (0);
1963         }
1964 
1965         /*
1966          * Always use the same number of submission and completion queues, and
1967          * never use more than the requested number of queues.
1968          */
1969         return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1970 }
1971 
1972 static int
1973 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1974 {
1975         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1976         nvme_create_queue_dw10_t dw10 = { 0 };
1977         nvme_create_cq_dw11_t c_dw11 = { 0 };
1978         nvme_create_sq_dw11_t s_dw11 = { 0 };
1979 
1980         dw10.b.q_qid = idx;
1981         dw10.b.q_qsize = qp->nq_nentry - 1;
1982 
1983         c_dw11.b.cq_pc = 1;
1984         c_dw11.b.cq_ien = 1;
1985         c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1986 
1987         cmd->nc_sqid = 0;
1988         cmd->nc_callback = nvme_wakeup_cmd;
1989         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1990         cmd->nc_sqe.sqe_cdw10 = dw10.r;
1991         cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1992         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1993 
1994         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1995                 dev_err(nvme->n_dip, CE_WARN,
1996                     "!nvme_admin_cmd failed for CREATE CQUEUE");
1997                 return (DDI_FAILURE);
1998         }
1999 
2000         if (nvme_check_cmd_status(cmd)) {
2001                 dev_err(nvme->n_dip, CE_WARN,
2002                     "!CREATE CQUEUE failed with sct = %x, sc = %x",
2003                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2004                 nvme_free_cmd(cmd);
2005                 return (DDI_FAILURE);
2006         }
2007 
2008         nvme_free_cmd(cmd);
2009 
2010         s_dw11.b.sq_pc = 1;
2011         s_dw11.b.sq_cqid = idx;
2012 
2013         cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2014         cmd->nc_sqid = 0;
2015         cmd->nc_callback = nvme_wakeup_cmd;
2016         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2017         cmd->nc_sqe.sqe_cdw10 = dw10.r;
2018         cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2019         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2020 
2021         if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
2022                 dev_err(nvme->n_dip, CE_WARN,
2023                     "!nvme_admin_cmd failed for CREATE SQUEUE");
2024                 return (DDI_FAILURE);
2025         }
2026 
2027         if (nvme_check_cmd_status(cmd)) {
2028                 dev_err(nvme->n_dip, CE_WARN,
2029                     "!CREATE SQUEUE failed with sct = %x, sc = %x",
2030                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2031                 nvme_free_cmd(cmd);
2032                 return (DDI_FAILURE);
2033         }
2034 
2035         nvme_free_cmd(cmd);
2036 
2037         return (DDI_SUCCESS);
2038 }
2039 
2040 static boolean_t
2041 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2042 {
2043         nvme_reg_csts_t csts;
2044         int i;
2045 
2046         nvme_put32(nvme, NVME_REG_CC, 0);
2047 
2048         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2049         if (csts.b.csts_rdy == 1) {
2050                 nvme_put32(nvme, NVME_REG_CC, 0);
2051                 for (i = 0; i != nvme->n_timeout * 10; i++) {
2052                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2053                         if (csts.b.csts_rdy == 0)
2054                                 break;
2055 
2056                         if (quiesce)
2057                                 drv_usecwait(50000);
2058                         else
2059                                 delay(drv_usectohz(50000));
2060                 }
2061         }
2062 
2063         nvme_put32(nvme, NVME_REG_AQA, 0);
2064         nvme_put32(nvme, NVME_REG_ASQ, 0);
2065         nvme_put32(nvme, NVME_REG_ACQ, 0);
2066 
2067         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2068         return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2069 }
2070 
2071 static void
2072 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2073 {
2074         nvme_reg_cc_t cc;
2075         nvme_reg_csts_t csts;
2076         int i;
2077 
2078         ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2079 
2080         cc.r = nvme_get32(nvme, NVME_REG_CC);
2081         cc.b.cc_shn = mode & 0x3;
2082         nvme_put32(nvme, NVME_REG_CC, cc.r);
2083 
2084         for (i = 0; i != 10; i++) {
2085                 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2086                 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2087                         break;
2088 
2089                 if (quiesce)
2090                         drv_usecwait(100000);
2091                 else
2092                         delay(drv_usectohz(100000));
2093         }
2094 }
2095 
2096 
2097 static void
2098 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2099 {
2100         /*
2101          * Section 7.7 of the spec describes how to get a unique ID for
2102          * the controller: the vendor ID, the model name and the serial
2103          * number shall be unique when combined.
2104          *
2105          * If a namespace has no EUI64 we use the above and add the hex
2106          * namespace ID to get a unique ID for the namespace.
2107          */
2108         char model[sizeof (nvme->n_idctl->id_model) + 1];
2109         char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2110 
2111         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2112         bcopy(nvme->n_idctl->id_serial, serial,
2113             sizeof (nvme->n_idctl->id_serial));
2114 
2115         model[sizeof (nvme->n_idctl->id_model)] = '\0';
2116         serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2117 
2118         nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2119             nvme->n_idctl->id_vid, model, serial, nsid);
2120 }
2121 
2122 static int
2123 nvme_init_ns(nvme_t *nvme, int nsid)
2124 {
2125         nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2126         nvme_identify_nsid_t *idns;
2127         int last_rp;
2128 
2129         ns->ns_nvme = nvme;
2130         idns = nvme_identify(nvme, nsid);
2131 
2132         if (idns == NULL) {
2133                 dev_err(nvme->n_dip, CE_WARN,
2134                     "!failed to identify namespace %d", nsid);
2135                 return (DDI_FAILURE);
2136         }
2137 
2138         ns->ns_idns = idns;
2139         ns->ns_id = nsid;
2140         ns->ns_block_count = idns->id_nsize;
2141         ns->ns_block_size =
2142             1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2143         ns->ns_best_block_size = ns->ns_block_size;
2144 
2145         /*
2146          * Get the EUI64 if present. Use it for devid and device node names.
2147          */
2148         if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2149                 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2150 
2151         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2152         if (*(uint64_t *)ns->ns_eui64 != 0) {
2153                 uint8_t *eui64 = ns->ns_eui64;
2154 
2155                 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2156                     "%02x%02x%02x%02x%02x%02x%02x%02x",
2157                     eui64[0], eui64[1], eui64[2], eui64[3],
2158                     eui64[4], eui64[5], eui64[6], eui64[7]);
2159         } else {
2160                 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2161                     ns->ns_id);
2162 
2163                 nvme_prepare_devid(nvme, ns->ns_id);
2164         }
2165 
2166         /*
2167          * Find the LBA format with no metadata and the best relative
2168          * performance. A value of 3 means "degraded", 0 is best.
2169          */
2170         last_rp = 3;
2171         for (int j = 0; j <= idns->id_nlbaf; j++) {
2172                 if (idns->id_lbaf[j].lbaf_lbads == 0)
2173                         break;
2174                 if (idns->id_lbaf[j].lbaf_ms != 0)
2175                         continue;
2176                 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2177                         continue;
2178                 last_rp = idns->id_lbaf[j].lbaf_rp;
2179                 ns->ns_best_block_size =
2180                     1 << idns->id_lbaf[j].lbaf_lbads;
2181         }
2182 
2183         if (ns->ns_best_block_size < nvme->n_min_block_size)
2184                 ns->ns_best_block_size = nvme->n_min_block_size;
2185 
2186         /*
2187          * We currently don't support namespaces that use either:
2188          * - thin provisioning
2189          * - protection information
2190          * - illegal block size (< 512)
2191          */
2192         if (idns->id_nsfeat.f_thin ||
2193             idns->id_dps.dp_pinfo) {
2194                 dev_err(nvme->n_dip, CE_WARN,
2195                     "!ignoring namespace %d, unsupported features: "
2196                     "thin = %d, pinfo = %d", nsid,
2197                     idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2198                 ns->ns_ignore = B_TRUE;
2199         } else if (ns->ns_block_size < 512) {
2200                 dev_err(nvme->n_dip, CE_WARN,
2201                     "!ignoring namespace %d, unsupported block size %"PRIu64,
2202                     nsid, (uint64_t)ns->ns_block_size);
2203                 ns->ns_ignore = B_TRUE;
2204         } else {
2205                 ns->ns_ignore = B_FALSE;
2206         }
2207 
2208         return (DDI_SUCCESS);
2209 }
2210 
2211 static int
2212 nvme_init(nvme_t *nvme)
2213 {
2214         nvme_reg_cc_t cc = { 0 };
2215         nvme_reg_aqa_t aqa = { 0 };
2216         nvme_reg_asq_t asq = { 0 };
2217         nvme_reg_acq_t acq = { 0 };
2218         nvme_reg_cap_t cap;
2219         nvme_reg_vs_t vs;
2220         nvme_reg_csts_t csts;
2221         int i = 0;
2222         int nqueues;
2223         char model[sizeof (nvme->n_idctl->id_model) + 1];
2224         char *vendor, *product;
2225 
2226         /* Check controller version */
2227         vs.r = nvme_get32(nvme, NVME_REG_VS);
2228         nvme->n_version.v_major = vs.b.vs_mjr;
2229         nvme->n_version.v_minor = vs.b.vs_mnr;
2230         dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2231             nvme->n_version.v_major, nvme->n_version.v_minor);
2232 
2233         if (NVME_VERSION_HIGHER(&nvme->n_version,
2234             nvme_version_major, nvme_version_minor)) {
2235                 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2236                     nvme_version_major, nvme_version_minor);
2237                 if (nvme->n_strict_version)
2238                         goto fail;
2239         }
2240 
2241         /* retrieve controller configuration */
2242         cap.r = nvme_get64(nvme, NVME_REG_CAP);
2243 
2244         if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2245                 dev_err(nvme->n_dip, CE_WARN,
2246                     "!NVM command set not supported by hardware");
2247                 goto fail;
2248         }
2249 
2250         nvme->n_nssr_supported = cap.b.cap_nssrs;
2251         nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2252         nvme->n_timeout = cap.b.cap_to;
2253         nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2254         nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2255         nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2256 
2257         /*
2258          * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2259          * the base page size of 4k (1<<12), so add 12 here to get the real
2260          * page size value.
2261          */
2262         nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2263             cap.b.cap_mpsmax + 12);
2264         nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2265 
2266         /*
2267          * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2268          */
2269         nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2270         nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2271 
2272         /*
2273          * Set up PRP DMA to transfer 1 page-aligned page at a time.
2274          * Maxxfer may be increased after we identified the controller limits.
2275          */
2276         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2277         nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2278         nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2279         nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2280 
2281         /*
2282          * Reset controller if it's still in ready state.
2283          */
2284         if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2285                 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2286                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2287                 nvme->n_dead = B_TRUE;
2288                 goto fail;
2289         }
2290 
2291         /*
2292          * Create the admin queue pair.
2293          */
2294         if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2295             != DDI_SUCCESS) {
2296                 dev_err(nvme->n_dip, CE_WARN,
2297                     "!unable to allocate admin qpair");
2298                 goto fail;
2299         }
2300         nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2301         nvme->n_ioq[0] = nvme->n_adminq;
2302 
2303         nvme->n_progress |= NVME_ADMIN_QUEUE;
2304 
2305         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2306             "admin-queue-len", nvme->n_admin_queue_len);
2307 
2308         aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2309         asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2310         acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2311 
2312         ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2313         ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2314 
2315         nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2316         nvme_put64(nvme, NVME_REG_ASQ, asq);
2317         nvme_put64(nvme, NVME_REG_ACQ, acq);
2318 
2319         cc.b.cc_ams = 0;        /* use Round-Robin arbitration */
2320         cc.b.cc_css = 0;        /* use NVM command set */
2321         cc.b.cc_mps = nvme->n_pageshift - 12;
2322         cc.b.cc_shn = 0;        /* no shutdown in progress */
2323         cc.b.cc_en = 1;         /* enable controller */
2324         cc.b.cc_iosqes = 6;     /* submission queue entry is 2^6 bytes long */
2325         cc.b.cc_iocqes = 4;     /* completion queue entry is 2^4 bytes long */
2326 
2327         nvme_put32(nvme, NVME_REG_CC, cc.r);
2328 
2329         /*
2330          * Wait for the controller to become ready.
2331          */
2332         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2333         if (csts.b.csts_rdy == 0) {
2334                 for (i = 0; i != nvme->n_timeout * 10; i++) {
2335                         delay(drv_usectohz(50000));
2336                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2337 
2338                         if (csts.b.csts_cfs == 1) {
2339                                 dev_err(nvme->n_dip, CE_WARN,
2340                                     "!controller fatal status at init");
2341                                 ddi_fm_service_impact(nvme->n_dip,
2342                                     DDI_SERVICE_LOST);
2343                                 nvme->n_dead = B_TRUE;
2344                                 goto fail;
2345                         }
2346 
2347                         if (csts.b.csts_rdy == 1)
2348                                 break;
2349                 }
2350         }
2351 
2352         if (csts.b.csts_rdy == 0) {
2353                 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2354                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2355                 nvme->n_dead = B_TRUE;
2356                 goto fail;
2357         }
2358 
2359         /*
2360          * Assume an abort command limit of 1. We'll destroy and re-init
2361          * that later when we know the true abort command limit.
2362          */
2363         sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2364 
2365         /*
2366          * Setup initial interrupt for admin queue.
2367          */
2368         if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2369             != DDI_SUCCESS) &&
2370             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2371             != DDI_SUCCESS) &&
2372             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2373             != DDI_SUCCESS)) {
2374                 dev_err(nvme->n_dip, CE_WARN,
2375                     "!failed to setup initial interrupt");
2376                 goto fail;
2377         }
2378 
2379         /*
2380          * Post an asynchronous event command to catch errors.
2381          */
2382         if (nvme_async_event(nvme) != DDI_SUCCESS) {
2383                 dev_err(nvme->n_dip, CE_WARN,
2384                     "!failed to post async event");
2385                 goto fail;
2386         }
2387 
2388         /*
2389          * Identify Controller
2390          */
2391         nvme->n_idctl = nvme_identify(nvme, 0);
2392         if (nvme->n_idctl == NULL) {
2393                 dev_err(nvme->n_dip, CE_WARN,
2394                     "!failed to identify controller");
2395                 goto fail;
2396         }
2397 
2398         /*
2399          * Get Vendor & Product ID
2400          */
2401         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2402         model[sizeof (nvme->n_idctl->id_model)] = '\0';
2403         sata_split_model(model, &vendor, &product);
2404 
2405         if (vendor == NULL)
2406                 nvme->n_vendor = strdup("NVMe");
2407         else
2408                 nvme->n_vendor = strdup(vendor);
2409 
2410         nvme->n_product = strdup(product);
2411 
2412         /*
2413          * Get controller limits.
2414          */
2415         nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2416             MIN(nvme->n_admin_queue_len / 10,
2417             MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2418 
2419         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2420             "async-event-limit", nvme->n_async_event_limit);
2421 
2422         nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2423 
2424         /*
2425          * Reinitialize the semaphore with the true abort command limit
2426          * supported by the hardware. It's not necessary to disable interrupts
2427          * as only command aborts use the semaphore, and no commands are
2428          * executed or aborted while we're here.
2429          */
2430         sema_destroy(&nvme->n_abort_sema);
2431         sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2432             SEMA_DRIVER, NULL);
2433 
2434         nvme->n_progress |= NVME_CTRL_LIMITS;
2435 
2436         if (nvme->n_idctl->id_mdts == 0)
2437                 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2438         else
2439                 nvme->n_max_data_transfer_size =
2440                     1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2441 
2442         nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2443 
2444         /*
2445          * Limit n_max_data_transfer_size to what we can handle in one PRP.
2446          * Chained PRPs are currently unsupported.
2447          *
2448          * This is a no-op on hardware which doesn't support a transfer size
2449          * big enough to require chained PRPs.
2450          */
2451         nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2452             (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2453 
2454         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2455 
2456         /*
2457          * Make sure the minimum/maximum queue entry sizes are not
2458          * larger/smaller than the default.
2459          */
2460 
2461         if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2462             ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2463             ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2464             ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2465                 goto fail;
2466 
2467         /*
2468          * Check for the presence of a Volatile Write Cache. If present,
2469          * enable or disable based on the value of the property
2470          * volatile-write-cache-enable (default is enabled).
2471          */
2472         nvme->n_write_cache_present =
2473             nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2474 
2475         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2476             "volatile-write-cache-present",
2477             nvme->n_write_cache_present ? 1 : 0);
2478 
2479         if (!nvme->n_write_cache_present) {
2480                 nvme->n_write_cache_enabled = B_FALSE;
2481         } else if (!nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)) {
2482                 dev_err(nvme->n_dip, CE_WARN,
2483                     "!failed to %sable volatile write cache",
2484                     nvme->n_write_cache_enabled ? "en" : "dis");
2485                 /*
2486                  * Assume the cache is (still) enabled.
2487                  */
2488                 nvme->n_write_cache_enabled = B_TRUE;
2489         }
2490 
2491         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2492             "volatile-write-cache-enable",
2493             nvme->n_write_cache_enabled ? 1 : 0);
2494 
2495         /*
2496          * Assume LBA Range Type feature is supported. If it isn't this
2497          * will be set to B_FALSE by nvme_get_features().
2498          */
2499         nvme->n_lba_range_supported = B_TRUE;
2500 
2501         /*
2502          * Check support for Autonomous Power State Transition.
2503          */
2504         if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2505                 nvme->n_auto_pst_supported =
2506                     nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2507 
2508         /*
2509          * Identify Namespaces
2510          */
2511         nvme->n_namespace_count = nvme->n_idctl->id_nn;
2512         if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2513                 dev_err(nvme->n_dip, CE_WARN,
2514                     "!too many namespaces: %d, limiting to %d\n",
2515                     nvme->n_namespace_count, NVME_MINOR_MAX);
2516                 nvme->n_namespace_count = NVME_MINOR_MAX;
2517         }
2518 
2519         nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2520             nvme->n_namespace_count, KM_SLEEP);
2521 
2522         for (i = 0; i != nvme->n_namespace_count; i++) {
2523                 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2524                     NULL);
2525                 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2526                         goto fail;
2527         }
2528 
2529         /*
2530          * Try to set up MSI/MSI-X interrupts.
2531          */
2532         if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2533             != 0) {
2534                 nvme_release_interrupts(nvme);
2535 
2536                 nqueues = MIN(UINT16_MAX, ncpus);
2537 
2538                 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2539                     nqueues) != DDI_SUCCESS) &&
2540                     (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2541                     nqueues) != DDI_SUCCESS)) {
2542                         dev_err(nvme->n_dip, CE_WARN,
2543                             "!failed to setup MSI/MSI-X interrupts");
2544                         goto fail;
2545                 }
2546         }
2547 
2548         nqueues = nvme->n_intr_cnt;
2549 
2550         /*
2551          * Create I/O queue pairs.
2552          */
2553         nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2554         if (nvme->n_ioq_count == 0) {
2555                 dev_err(nvme->n_dip, CE_WARN,
2556                     "!failed to set number of I/O queues to %d", nqueues);
2557                 goto fail;
2558         }
2559 
2560         /*
2561          * Reallocate I/O queue array
2562          */
2563         kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2564         nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2565             (nvme->n_ioq_count + 1), KM_SLEEP);
2566         nvme->n_ioq[0] = nvme->n_adminq;
2567 
2568         /*
2569          * If we got less queues than we asked for we might as well give
2570          * some of the interrupt vectors back to the system.
2571          */
2572         if (nvme->n_ioq_count < nqueues) {
2573                 nvme_release_interrupts(nvme);
2574 
2575                 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2576                     nvme->n_ioq_count) != DDI_SUCCESS) {
2577                         dev_err(nvme->n_dip, CE_WARN,
2578                             "!failed to reduce number of interrupts");
2579                         goto fail;
2580                 }
2581         }
2582 
2583         /*
2584          * Alloc & register I/O queue pairs
2585          */
2586         nvme->n_io_queue_len =
2587             MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2588         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2589             nvme->n_io_queue_len);
2590 
2591         for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2592                 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2593                     &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2594                         dev_err(nvme->n_dip, CE_WARN,
2595                             "!unable to allocate I/O qpair %d", i);
2596                         goto fail;
2597                 }
2598 
2599                 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2600                     != DDI_SUCCESS) {
2601                         dev_err(nvme->n_dip, CE_WARN,
2602                             "!unable to create I/O qpair %d", i);
2603                         goto fail;
2604                 }
2605         }
2606 
2607         /*
2608          * Post more asynchronous events commands to reduce event reporting
2609          * latency as suggested by the spec.
2610          */
2611         for (i = 1; i != nvme->n_async_event_limit; i++) {
2612                 if (nvme_async_event(nvme) != DDI_SUCCESS) {
2613                         dev_err(nvme->n_dip, CE_WARN,
2614                             "!failed to post async event %d", i);
2615                         goto fail;
2616                 }
2617         }
2618 
2619         return (DDI_SUCCESS);
2620 
2621 fail:
2622         (void) nvme_reset(nvme, B_FALSE);
2623         return (DDI_FAILURE);
2624 }
2625 
2626 static uint_t
2627 nvme_intr(caddr_t arg1, caddr_t arg2)
2628 {
2629         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2630         nvme_t *nvme = (nvme_t *)arg1;
2631         int inum = (int)(uintptr_t)arg2;
2632         int ccnt = 0;
2633         int qnum;
2634         nvme_cmd_t *cmd;
2635 
2636         if (inum >= nvme->n_intr_cnt)
2637                 return (DDI_INTR_UNCLAIMED);
2638 
2639         /*
2640          * The interrupt vector a queue uses is calculated as queue_idx %
2641          * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2642          * in steps of n_intr_cnt to process all queues using this vector.
2643          */
2644         for (qnum = inum;
2645             qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2646             qnum += nvme->n_intr_cnt) {
2647                 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2648                         taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2649                             cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2650                         ccnt++;
2651                 }
2652         }
2653 
2654         return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2655 }
2656 
2657 static void
2658 nvme_release_interrupts(nvme_t *nvme)
2659 {
2660         int i;
2661 
2662         for (i = 0; i < nvme->n_intr_cnt; i++) {
2663                 if (nvme->n_inth[i] == NULL)
2664                         break;
2665 
2666                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2667                         (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2668                 else
2669                         (void) ddi_intr_disable(nvme->n_inth[i]);
2670 
2671                 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2672                 (void) ddi_intr_free(nvme->n_inth[i]);
2673         }
2674 
2675         kmem_free(nvme->n_inth, nvme->n_inth_sz);
2676         nvme->n_inth = NULL;
2677         nvme->n_inth_sz = 0;
2678 
2679         nvme->n_progress &= ~NVME_INTERRUPTS;
2680 }
2681 
2682 static int
2683 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2684 {
2685         int nintrs, navail, count;
2686         int ret;
2687         int i;
2688 
2689         if (nvme->n_intr_types == 0) {
2690                 ret = ddi_intr_get_supported_types(nvme->n_dip,
2691                     &nvme->n_intr_types);
2692                 if (ret != DDI_SUCCESS) {
2693                         dev_err(nvme->n_dip, CE_WARN,
2694                             "!%s: ddi_intr_get_supported types failed",
2695                             __func__);
2696                         return (ret);
2697                 }
2698 #ifdef __x86
2699                 if (get_hwenv() == HW_VMWARE)
2700                         nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2701 #endif
2702         }
2703 
2704         if ((nvme->n_intr_types & intr_type) == 0)
2705                 return (DDI_FAILURE);
2706 
2707         ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2708         if (ret != DDI_SUCCESS) {
2709                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2710                     __func__);
2711                 return (ret);
2712         }
2713 
2714         ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2715         if (ret != DDI_SUCCESS) {
2716                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2717                     __func__);
2718                 return (ret);
2719         }
2720 
2721         /* We want at most one interrupt per queue pair. */
2722         if (navail > nqpairs)
2723                 navail = nqpairs;
2724 
2725         nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2726         nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2727 
2728         ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2729             &count, 0);
2730         if (ret != DDI_SUCCESS) {
2731                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2732                     __func__);
2733                 goto fail;
2734         }
2735 
2736         nvme->n_intr_cnt = count;
2737 
2738         ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2739         if (ret != DDI_SUCCESS) {
2740                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2741                     __func__);
2742                 goto fail;
2743         }
2744 
2745         for (i = 0; i < count; i++) {
2746                 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2747                     (void *)nvme, (void *)(uintptr_t)i);
2748                 if (ret != DDI_SUCCESS) {
2749                         dev_err(nvme->n_dip, CE_WARN,
2750                             "!%s: ddi_intr_add_handler failed", __func__);
2751                         goto fail;
2752                 }
2753         }
2754 
2755         (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2756 
2757         for (i = 0; i < count; i++) {
2758                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2759                         ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2760                 else
2761                         ret = ddi_intr_enable(nvme->n_inth[i]);
2762 
2763                 if (ret != DDI_SUCCESS) {
2764                         dev_err(nvme->n_dip, CE_WARN,
2765                             "!%s: enabling interrupt %d failed", __func__, i);
2766                         goto fail;
2767                 }
2768         }
2769 
2770         nvme->n_intr_type = intr_type;
2771 
2772         nvme->n_progress |= NVME_INTERRUPTS;
2773 
2774         return (DDI_SUCCESS);
2775 
2776 fail:
2777         nvme_release_interrupts(nvme);
2778 
2779         return (ret);
2780 }
2781 
2782 static int
2783 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2784 {
2785         _NOTE(ARGUNUSED(arg));
2786 
2787         pci_ereport_post(dip, fm_error, NULL);
2788         return (fm_error->fme_status);
2789 }
2790 
2791 static int
2792 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2793 {
2794         nvme_t *nvme;
2795         int instance;
2796         int nregs;
2797         off_t regsize;
2798         int i;
2799         char name[32];
2800 
2801         if (cmd != DDI_ATTACH)
2802                 return (DDI_FAILURE);
2803 
2804         instance = ddi_get_instance(dip);
2805 
2806         if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2807                 return (DDI_FAILURE);
2808 
2809         nvme = ddi_get_soft_state(nvme_state, instance);
2810         ddi_set_driver_private(dip, nvme);
2811         nvme->n_dip = dip;
2812 
2813         mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2814 
2815         nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2816             DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2817         nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2818             dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2819             B_TRUE : B_FALSE;
2820         nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2821             DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2822         nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2823             DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2824         nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2825             DDI_PROP_DONTPASS, "async-event-limit",
2826             NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2827         nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2828             DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2829             B_TRUE : B_FALSE;
2830         nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2831             DDI_PROP_DONTPASS, "min-phys-block-size",
2832             NVME_DEFAULT_MIN_BLOCK_SIZE);
2833 
2834         if (!ISP2(nvme->n_min_block_size) ||
2835             (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2836                 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2837                     "using default %d", ISP2(nvme->n_min_block_size) ?
2838                     "too low" : "not a power of 2",
2839                     NVME_DEFAULT_MIN_BLOCK_SIZE);
2840                 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2841         }
2842 
2843         if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2844                 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2845         else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2846                 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2847 
2848         if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2849                 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2850 
2851         if (nvme->n_async_event_limit < 1)
2852                 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2853 
2854         nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2855         nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2856         nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2857         nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2858 
2859         /*
2860          * Setup FMA support.
2861          */
2862         nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2863             DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2864             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2865             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2866 
2867         ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2868 
2869         if (nvme->n_fm_cap) {
2870                 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2871                         nvme->n_reg_acc_attr.devacc_attr_access =
2872                             DDI_FLAGERR_ACC;
2873 
2874                 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2875                         nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2876                         nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2877                 }
2878 
2879                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2880                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2881                         pci_ereport_setup(dip);
2882 
2883                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2884                         ddi_fm_handler_register(dip, nvme_fm_errcb,
2885                             (void *)nvme);
2886         }
2887 
2888         nvme->n_progress |= NVME_FMA_INIT;
2889 
2890         /*
2891          * The spec defines several register sets. Only the controller
2892          * registers (set 1) are currently used.
2893          */
2894         if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2895             nregs < 2 ||
2896             ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2897                 goto fail;
2898 
2899         if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2900             &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2901                 dev_err(dip, CE_WARN, "!failed to map regset 1");
2902                 goto fail;
2903         }
2904 
2905         nvme->n_progress |= NVME_REGS_MAPPED;
2906 
2907         /*
2908          * Create taskq for command completion.
2909          */
2910         (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2911             ddi_driver_name(dip), ddi_get_instance(dip));
2912         nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2913             TASKQ_DEFAULTPRI, 0);
2914         if (nvme->n_cmd_taskq == NULL) {
2915                 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2916                 goto fail;
2917         }
2918 
2919         /*
2920          * Create PRP DMA cache
2921          */
2922         (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2923             ddi_driver_name(dip), ddi_get_instance(dip));
2924         nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2925             0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2926             NULL, (void *)nvme, NULL, 0);
2927 
2928         if (nvme_init(nvme) != DDI_SUCCESS)
2929                 goto fail;
2930 
2931         /*
2932          * Attach the blkdev driver for each namespace.
2933          */
2934         for (i = 0; i != nvme->n_namespace_count; i++) {
2935                 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2936                     S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2937                     DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2938                         dev_err(dip, CE_WARN,
2939                             "!failed to create minor node for namespace %d", i);
2940                         goto fail;
2941                 }
2942 
2943                 if (nvme->n_ns[i].ns_ignore)
2944                         continue;
2945 
2946                 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2947                     &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2948 
2949                 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2950                         dev_err(dip, CE_WARN,
2951                             "!failed to get blkdev handle for namespace %d", i);
2952                         goto fail;
2953                 }
2954 
2955                 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2956                     != DDI_SUCCESS) {
2957                         dev_err(dip, CE_WARN,
2958                             "!failed to attach blkdev handle for namespace %d",
2959                             i);
2960                         goto fail;
2961                 }
2962         }
2963 
2964         if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2965             NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2966             != DDI_SUCCESS) {
2967                 dev_err(dip, CE_WARN, "nvme_attach: "
2968                     "cannot create devctl minor node");
2969                 goto fail;
2970         }
2971 
2972         return (DDI_SUCCESS);
2973 
2974 fail:
2975         /* attach successful anyway so that FMA can retire the device */
2976         if (nvme->n_dead)
2977                 return (DDI_SUCCESS);
2978 
2979         (void) nvme_detach(dip, DDI_DETACH);
2980 
2981         return (DDI_FAILURE);
2982 }
2983 
2984 static int
2985 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2986 {
2987         int instance, i;
2988         nvme_t *nvme;
2989 
2990         if (cmd != DDI_DETACH)
2991                 return (DDI_FAILURE);
2992 
2993         instance = ddi_get_instance(dip);
2994 
2995         nvme = ddi_get_soft_state(nvme_state, instance);
2996 
2997         if (nvme == NULL)
2998                 return (DDI_FAILURE);
2999 
3000         ddi_remove_minor_node(dip, "devctl");
3001         mutex_destroy(&nvme->n_minor.nm_mutex);
3002 
3003         if (nvme->n_ns) {
3004                 for (i = 0; i != nvme->n_namespace_count; i++) {
3005                         ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3006                         mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3007 
3008                         if (nvme->n_ns[i].ns_bd_hdl) {
3009                                 (void) bd_detach_handle(
3010                                     nvme->n_ns[i].ns_bd_hdl);
3011                                 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3012                         }
3013 
3014                         if (nvme->n_ns[i].ns_idns)
3015                                 kmem_free(nvme->n_ns[i].ns_idns,
3016                                     sizeof (nvme_identify_nsid_t));
3017                         if (nvme->n_ns[i].ns_devid)
3018                                 strfree(nvme->n_ns[i].ns_devid);
3019                 }
3020 
3021                 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3022                     nvme->n_namespace_count);
3023         }
3024 
3025         if (nvme->n_progress & NVME_INTERRUPTS)
3026                 nvme_release_interrupts(nvme);
3027 
3028         if (nvme->n_cmd_taskq)
3029                 ddi_taskq_wait(nvme->n_cmd_taskq);
3030 
3031         if (nvme->n_ioq_count > 0) {
3032                 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3033                         if (nvme->n_ioq[i] != NULL) {
3034                                 /* TODO: send destroy queue commands */
3035                                 nvme_free_qpair(nvme->n_ioq[i]);
3036                         }
3037                 }
3038 
3039                 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3040                     (nvme->n_ioq_count + 1));
3041         }
3042 
3043         if (nvme->n_prp_cache != NULL) {
3044                 kmem_cache_destroy(nvme->n_prp_cache);
3045         }
3046 
3047         if (nvme->n_progress & NVME_REGS_MAPPED) {
3048                 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3049                 (void) nvme_reset(nvme, B_FALSE);
3050         }
3051 
3052         if (nvme->n_cmd_taskq)
3053                 ddi_taskq_destroy(nvme->n_cmd_taskq);
3054 
3055         if (nvme->n_progress & NVME_CTRL_LIMITS)
3056                 sema_destroy(&nvme->n_abort_sema);
3057 
3058         if (nvme->n_progress & NVME_ADMIN_QUEUE)
3059                 nvme_free_qpair(nvme->n_adminq);
3060 
3061         if (nvme->n_idctl)
3062                 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3063 
3064         if (nvme->n_progress & NVME_REGS_MAPPED)
3065                 ddi_regs_map_free(&nvme->n_regh);
3066 
3067         if (nvme->n_progress & NVME_FMA_INIT) {
3068                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3069                         ddi_fm_handler_unregister(nvme->n_dip);
3070 
3071                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3072                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3073                         pci_ereport_teardown(nvme->n_dip);
3074 
3075                 ddi_fm_fini(nvme->n_dip);
3076         }
3077 
3078         if (nvme->n_vendor != NULL)
3079                 strfree(nvme->n_vendor);
3080 
3081         if (nvme->n_product != NULL)
3082                 strfree(nvme->n_product);
3083 
3084         ddi_soft_state_free(nvme_state, instance);
3085 
3086         return (DDI_SUCCESS);
3087 }
3088 
3089 static int
3090 nvme_quiesce(dev_info_t *dip)
3091 {
3092         int instance;
3093         nvme_t *nvme;
3094 
3095         instance = ddi_get_instance(dip);
3096 
3097         nvme = ddi_get_soft_state(nvme_state, instance);
3098 
3099         if (nvme == NULL)
3100                 return (DDI_FAILURE);
3101 
3102         nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3103 
3104         (void) nvme_reset(nvme, B_TRUE);
3105 
3106         return (DDI_FAILURE);
3107 }
3108 
3109 static int
3110 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3111 {
3112         nvme_t *nvme = cmd->nc_nvme;
3113         int nprp_page, nprp;
3114         uint64_t *prp;
3115 
3116         if (xfer->x_ndmac == 0)
3117                 return (DDI_FAILURE);
3118 
3119         cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3120         ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3121 
3122         if (xfer->x_ndmac == 1) {
3123                 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3124                 return (DDI_SUCCESS);
3125         } else if (xfer->x_ndmac == 2) {
3126                 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3127                 return (DDI_SUCCESS);
3128         }
3129 
3130         xfer->x_ndmac--;
3131 
3132         nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3133         ASSERT(nprp_page > 0);
3134         nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3135 
3136         /*
3137          * We currently don't support chained PRPs and set up our DMA
3138          * attributes to reflect that. If we still get an I/O request
3139          * that needs a chained PRP something is very wrong.
3140          */
3141         VERIFY(nprp == 1);
3142 
3143         cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3144         bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3145 
3146         cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3147 
3148         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3149         for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3150             xfer->x_ndmac > 0;
3151             prp++, xfer->x_ndmac--) {
3152                 *prp = xfer->x_dmac.dmac_laddress;
3153                 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3154         }
3155 
3156         (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3157             DDI_DMA_SYNC_FORDEV);
3158         return (DDI_SUCCESS);
3159 }
3160 
3161 static nvme_cmd_t *
3162 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3163 {
3164         nvme_t *nvme = ns->ns_nvme;
3165         nvme_cmd_t *cmd;
3166 
3167         /*
3168          * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3169          */
3170         cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3171             KM_NOSLEEP : KM_SLEEP);
3172 
3173         if (cmd == NULL)
3174                 return (NULL);
3175 
3176         cmd->nc_sqe.sqe_opc = opc;
3177         cmd->nc_callback = nvme_bd_xfer_done;
3178         cmd->nc_xfer = xfer;
3179 
3180         switch (opc) {
3181         case NVME_OPC_NVM_WRITE:
3182         case NVME_OPC_NVM_READ:
3183                 VERIFY(xfer->x_nblks <= 0x10000);
3184 
3185                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3186 
3187                 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3188                 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3189                 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3190 
3191                 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3192                         goto fail;
3193                 break;
3194 
3195         case NVME_OPC_NVM_FLUSH:
3196                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3197                 break;
3198 
3199         default:
3200                 goto fail;
3201         }
3202 
3203         return (cmd);
3204 
3205 fail:
3206         nvme_free_cmd(cmd);
3207         return (NULL);
3208 }
3209 
3210 static void
3211 nvme_bd_xfer_done(void *arg)
3212 {
3213         nvme_cmd_t *cmd = arg;
3214         bd_xfer_t *xfer = cmd->nc_xfer;
3215         int error = 0;
3216 
3217         error = nvme_check_cmd_status(cmd);
3218         nvme_free_cmd(cmd);
3219 
3220         bd_xfer_done(xfer, error);
3221 }
3222 
3223 static void
3224 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3225 {
3226         nvme_namespace_t *ns = arg;
3227         nvme_t *nvme = ns->ns_nvme;
3228 
3229         /*
3230          * blkdev maintains one queue size per instance (namespace),
3231          * but all namespace share the I/O queues.
3232          * TODO: need to figure out a sane default, or use per-NS I/O queues,
3233          * or change blkdev to handle EAGAIN
3234          */
3235         drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3236             / nvme->n_namespace_count;
3237 
3238         /*
3239          * d_maxxfer is not set, which means the value is taken from the DMA
3240          * attributes specified to bd_alloc_handle.
3241          */
3242 
3243         drive->d_removable = B_FALSE;
3244         drive->d_hotpluggable = B_FALSE;
3245 
3246         bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3247         drive->d_target = ns->ns_id;
3248         drive->d_lun = 0;
3249 
3250         drive->d_model = nvme->n_idctl->id_model;
3251         drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3252         drive->d_vendor = nvme->n_vendor;
3253         drive->d_vendor_len = strlen(nvme->n_vendor);
3254         drive->d_product = nvme->n_product;
3255         drive->d_product_len = strlen(nvme->n_product);
3256         drive->d_serial = nvme->n_idctl->id_serial;
3257         drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3258         drive->d_revision = nvme->n_idctl->id_fwrev;
3259         drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3260 }
3261 
3262 static int
3263 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3264 {
3265         nvme_namespace_t *ns = arg;
3266 
3267         media->m_nblks = ns->ns_block_count;
3268         media->m_blksize = ns->ns_block_size;
3269         media->m_readonly = B_FALSE;
3270         media->m_solidstate = B_TRUE;
3271 
3272         media->m_pblksize = ns->ns_best_block_size;
3273 
3274         return (0);
3275 }
3276 
3277 static int
3278 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3279 {
3280         nvme_t *nvme = ns->ns_nvme;
3281         nvme_cmd_t *cmd, *ret;
3282         nvme_qpair_t *ioq;
3283         boolean_t poll;
3284 
3285         if (nvme->n_dead)
3286                 return (EIO);
3287 
3288         cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3289         if (cmd == NULL)
3290                 return (ENOMEM);
3291 
3292         cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3293         ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3294         ioq = nvme->n_ioq[cmd->nc_sqid];
3295 
3296         /*
3297          * Get the polling flag before submitting the command. The command may
3298          * complete immediately after it was submitted, which means we must
3299          * treat both cmd and xfer as if they have been freed already.
3300          */
3301         poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3302 
3303         if (nvme_submit_cmd(ioq, cmd) != DDI_SUCCESS)
3304                 return (EAGAIN);
3305 
3306         if (!poll)
3307                 return (0);
3308 
3309         do {
3310                 ret = nvme_retrieve_cmd(nvme, ioq);
3311                 if (ret != NULL)
3312                         nvme_bd_xfer_done(ret);
3313                 else
3314                         drv_usecwait(10);
3315         } while (ioq->nq_active_cmds != 0);
3316 
3317         return (0);
3318 }
3319 
3320 static int
3321 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3322 {
3323         nvme_namespace_t *ns = arg;
3324 
3325         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3326 }
3327 
3328 static int
3329 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3330 {
3331         nvme_namespace_t *ns = arg;
3332 
3333         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3334 }
3335 
3336 static int
3337 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3338 {
3339         nvme_namespace_t *ns = arg;
3340 
3341         if (ns->ns_nvme->n_dead)
3342                 return (EIO);
3343 
3344         /*
3345          * If the volatile write cache is not present or not enabled the FLUSH
3346          * command is a no-op, so we can take a shortcut here.
3347          */
3348         if (!ns->ns_nvme->n_write_cache_present) {
3349                 bd_xfer_done(xfer, ENOTSUP);
3350                 return (0);
3351         }
3352 
3353         if (!ns->ns_nvme->n_write_cache_enabled) {
3354                 bd_xfer_done(xfer, 0);
3355                 return (0);
3356         }
3357 
3358         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3359 }
3360 
3361 static int
3362 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3363 {
3364         nvme_namespace_t *ns = arg;
3365 
3366         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3367         if (*(uint64_t *)ns->ns_eui64 != 0) {
3368                 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3369                     sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3370         } else {
3371                 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3372                     strlen(ns->ns_devid), ns->ns_devid, devid));
3373         }
3374 }
3375 
3376 static int
3377 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3378 {
3379 #ifndef __lock_lint
3380         _NOTE(ARGUNUSED(cred_p));
3381 #endif
3382         minor_t minor = getminor(*devp);
3383         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3384         int nsid = NVME_MINOR_NSID(minor);
3385         nvme_minor_state_t *nm;
3386         int rv = 0;
3387 
3388         if (otyp != OTYP_CHR)
3389                 return (EINVAL);
3390 
3391         if (nvme == NULL)
3392                 return (ENXIO);
3393 
3394         if (nsid > nvme->n_namespace_count)
3395                 return (ENXIO);
3396 
3397         nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3398 
3399         mutex_enter(&nm->nm_mutex);
3400         if (nm->nm_oexcl) {
3401                 rv = EBUSY;
3402                 goto out;
3403         }
3404 
3405         if (flag & FEXCL) {
3406                 if (nm->nm_ocnt != 0) {
3407                         rv = EBUSY;
3408                         goto out;
3409                 }
3410                 nm->nm_oexcl = B_TRUE;
3411         }
3412 
3413         nm->nm_ocnt++;
3414 
3415 out:
3416         mutex_exit(&nm->nm_mutex);
3417         return (rv);
3418 
3419 }
3420 
3421 static int
3422 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3423 {
3424 #ifndef __lock_lint
3425         _NOTE(ARGUNUSED(cred_p));
3426         _NOTE(ARGUNUSED(flag));
3427 #endif
3428         minor_t minor = getminor(dev);
3429         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3430         int nsid = NVME_MINOR_NSID(minor);
3431         nvme_minor_state_t *nm;
3432 
3433         if (otyp != OTYP_CHR)
3434                 return (ENXIO);
3435 
3436         if (nvme == NULL)
3437                 return (ENXIO);
3438 
3439         if (nsid > nvme->n_namespace_count)
3440                 return (ENXIO);
3441 
3442         nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3443 
3444         mutex_enter(&nm->nm_mutex);
3445         if (nm->nm_oexcl)
3446                 nm->nm_oexcl = B_FALSE;
3447 
3448         ASSERT(nm->nm_ocnt > 0);
3449         nm->nm_ocnt--;
3450         mutex_exit(&nm->nm_mutex);
3451 
3452         return (0);
3453 }
3454 
3455 static int
3456 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3457     cred_t *cred_p)
3458 {
3459         _NOTE(ARGUNUSED(cred_p));
3460         int rv = 0;
3461         void *idctl;
3462 
3463         if ((mode & FREAD) == 0)
3464                 return (EPERM);
3465 
3466         if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3467                 return (EINVAL);
3468 
3469         idctl = nvme_identify(nvme, nsid);
3470         if (idctl == NULL)
3471                 return (EIO);
3472 
3473         if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3474             != 0)
3475                 rv = EFAULT;
3476 
3477         kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3478 
3479         return (rv);
3480 }
3481 
3482 static int
3483 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3484     int mode, cred_t *cred_p)
3485 {
3486         _NOTE(ARGUNUSED(nsid, cred_p));
3487         int rv = 0;
3488         nvme_reg_cap_t cap = { 0 };
3489         nvme_capabilities_t nc;
3490 
3491         if ((mode & FREAD) == 0)
3492                 return (EPERM);
3493 
3494         if (nioc->n_len < sizeof (nc))
3495                 return (EINVAL);
3496 
3497         cap.r = nvme_get64(nvme, NVME_REG_CAP);
3498 
3499         /*
3500          * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3501          * specify the base page size of 4k (1<<12), so add 12 here to
3502          * get the real page size value.
3503          */
3504         nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3505         nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3506 
3507         if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3508                 rv = EFAULT;
3509 
3510         return (rv);
3511 }
3512 
3513 static int
3514 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3515     int mode, cred_t *cred_p)
3516 {
3517         _NOTE(ARGUNUSED(cred_p));
3518         void *log = NULL;
3519         size_t bufsize = 0;
3520         int rv = 0;
3521 
3522         if ((mode & FREAD) == 0)
3523                 return (EPERM);
3524 
3525         switch (nioc->n_arg) {
3526         case NVME_LOGPAGE_ERROR:
3527                 if (nsid != 0)
3528                         return (EINVAL);
3529                 break;
3530         case NVME_LOGPAGE_HEALTH:
3531                 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3532                         return (EINVAL);
3533 
3534                 if (nsid == 0)
3535                         nsid = (uint32_t)-1;
3536 
3537                 break;
3538         case NVME_LOGPAGE_FWSLOT:
3539                 if (nsid != 0)
3540                         return (EINVAL);
3541                 break;
3542         default:
3543                 return (EINVAL);
3544         }
3545 
3546         if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3547             != DDI_SUCCESS)
3548                 return (EIO);
3549 
3550         if (nioc->n_len < bufsize) {
3551                 kmem_free(log, bufsize);
3552                 return (EINVAL);
3553         }
3554 
3555         if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3556                 rv = EFAULT;
3557 
3558         nioc->n_len = bufsize;
3559         kmem_free(log, bufsize);
3560 
3561         return (rv);
3562 }
3563 
3564 static int
3565 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3566     int mode, cred_t *cred_p)
3567 {
3568         _NOTE(ARGUNUSED(cred_p));
3569         void *buf = NULL;
3570         size_t bufsize = 0;
3571         uint32_t res = 0;
3572         uint8_t feature;
3573         int rv = 0;
3574 
3575         if ((mode & FREAD) == 0)
3576                 return (EPERM);
3577 
3578         if ((nioc->n_arg >> 32) > 0xff)
3579                 return (EINVAL);
3580 
3581         feature = (uint8_t)(nioc->n_arg >> 32);
3582 
3583         switch (feature) {
3584         case NVME_FEAT_ARBITRATION:
3585         case NVME_FEAT_POWER_MGMT:
3586         case NVME_FEAT_TEMPERATURE:
3587         case NVME_FEAT_ERROR:
3588         case NVME_FEAT_NQUEUES:
3589         case NVME_FEAT_INTR_COAL:
3590         case NVME_FEAT_WRITE_ATOM:
3591         case NVME_FEAT_ASYNC_EVENT:
3592         case NVME_FEAT_PROGRESS:
3593                 if (nsid != 0)
3594                         return (EINVAL);
3595                 break;
3596 
3597         case NVME_FEAT_INTR_VECT:
3598                 if (nsid != 0)
3599                         return (EINVAL);
3600 
3601                 res = nioc->n_arg & 0xffffffffUL;
3602                 if (res >= nvme->n_intr_cnt)
3603                         return (EINVAL);
3604                 break;
3605 
3606         case NVME_FEAT_LBA_RANGE:
3607                 if (nvme->n_lba_range_supported == B_FALSE)
3608                         return (EINVAL);
3609 
3610                 if (nsid == 0 ||
3611                     nsid > nvme->n_namespace_count)
3612                         return (EINVAL);
3613 
3614                 break;
3615 
3616         case NVME_FEAT_WRITE_CACHE:
3617                 if (nsid != 0)
3618                         return (EINVAL);
3619 
3620                 if (!nvme->n_write_cache_present)
3621                         return (EINVAL);
3622 
3623                 break;
3624 
3625         case NVME_FEAT_AUTO_PST:
3626                 if (nsid != 0)
3627                         return (EINVAL);
3628 
3629                 if (!nvme->n_auto_pst_supported)
3630                         return (EINVAL);
3631 
3632                 break;
3633 
3634         default:
3635                 return (EINVAL);
3636         }
3637 
3638         if (nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize) ==
3639             B_FALSE)
3640                 return (EIO);
3641 
3642         if (nioc->n_len < bufsize) {
3643                 kmem_free(buf, bufsize);
3644                 return (EINVAL);
3645         }
3646 
3647         if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3648                 rv = EFAULT;
3649 
3650         kmem_free(buf, bufsize);
3651         nioc->n_arg = res;
3652         nioc->n_len = bufsize;
3653 
3654         return (rv);
3655 }
3656 
3657 static int
3658 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3659     cred_t *cred_p)
3660 {
3661         _NOTE(ARGUNUSED(nsid, mode, cred_p));
3662 
3663         if ((mode & FREAD) == 0)
3664                 return (EPERM);
3665 
3666         nioc->n_arg = nvme->n_intr_cnt;
3667         return (0);
3668 }
3669 
3670 static int
3671 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3672     cred_t *cred_p)
3673 {
3674         _NOTE(ARGUNUSED(nsid, cred_p));
3675         int rv = 0;
3676 
3677         if ((mode & FREAD) == 0)
3678                 return (EPERM);
3679 
3680         if (nioc->n_len < sizeof (nvme->n_version))
3681                 return (ENOMEM);
3682 
3683         if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3684             sizeof (nvme->n_version), mode) != 0)
3685                 rv = EFAULT;
3686 
3687         return (rv);
3688 }
3689 
3690 static int
3691 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3692     cred_t *cred_p)
3693 {
3694         _NOTE(ARGUNUSED(mode));
3695         nvme_format_nvm_t frmt = { 0 };
3696         int c_nsid = nsid != 0 ? nsid - 1 : 0;
3697 
3698         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3699                 return (EPERM);
3700 
3701         frmt.r = nioc->n_arg & 0xffffffff;
3702 
3703         /*
3704          * Check whether the FORMAT NVM command is supported.
3705          */
3706         if (nvme->n_idctl->id_oacs.oa_format == 0)
3707                 return (EINVAL);
3708 
3709         /*
3710          * Don't allow format or secure erase of individual namespace if that
3711          * would cause a format or secure erase of all namespaces.
3712          */
3713         if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3714                 return (EINVAL);
3715 
3716         if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3717             nvme->n_idctl->id_fna.fn_sec_erase != 0)
3718                 return (EINVAL);
3719 
3720         /*
3721          * Don't allow formatting with Protection Information.
3722          */
3723         if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3724                 return (EINVAL);
3725 
3726         /*
3727          * Don't allow formatting using an illegal LBA format, or any LBA format
3728          * that uses metadata.
3729          */
3730         if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3731             nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3732                 return (EINVAL);
3733 
3734         /*
3735          * Don't allow formatting using an illegal Secure Erase setting.
3736          */
3737         if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3738             (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3739             nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3740                 return (EINVAL);
3741 
3742         if (nsid == 0)
3743                 nsid = (uint32_t)-1;
3744 
3745         return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3746             frmt.b.fm_ses));
3747 }
3748 
3749 static int
3750 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3751     cred_t *cred_p)
3752 {
3753         _NOTE(ARGUNUSED(nioc, mode));
3754         int rv = 0;
3755 
3756         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3757                 return (EPERM);
3758 
3759         if (nsid == 0)
3760                 return (EINVAL);
3761 
3762         rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3763         if (rv != DDI_SUCCESS)
3764                 rv = EBUSY;
3765 
3766         return (rv);
3767 }
3768 
3769 static int
3770 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3771     cred_t *cred_p)
3772 {
3773         _NOTE(ARGUNUSED(nioc, mode));
3774         nvme_identify_nsid_t *idns;
3775         int rv = 0;
3776 
3777         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3778                 return (EPERM);
3779 
3780         if (nsid == 0)
3781                 return (EINVAL);
3782 
3783         /*
3784          * Identify namespace again, free old identify data.
3785          */
3786         idns = nvme->n_ns[nsid - 1].ns_idns;
3787         if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3788                 return (EIO);
3789 
3790         kmem_free(idns, sizeof (nvme_identify_nsid_t));
3791 
3792         rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3793         if (rv != DDI_SUCCESS)
3794                 rv = EBUSY;
3795 
3796         return (rv);
3797 }
3798 
3799 static int
3800 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3801     int *rval_p)
3802 {
3803 #ifndef __lock_lint
3804         _NOTE(ARGUNUSED(rval_p));
3805 #endif
3806         minor_t minor = getminor(dev);
3807         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3808         int nsid = NVME_MINOR_NSID(minor);
3809         int rv = 0;
3810         nvme_ioctl_t nioc;
3811 
3812         int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3813                 NULL,
3814                 nvme_ioctl_identify,
3815                 nvme_ioctl_identify,
3816                 nvme_ioctl_capabilities,
3817                 nvme_ioctl_get_logpage,
3818                 nvme_ioctl_get_features,
3819                 nvme_ioctl_intr_cnt,
3820                 nvme_ioctl_version,
3821                 nvme_ioctl_format,
3822                 nvme_ioctl_detach,
3823                 nvme_ioctl_attach
3824         };
3825 
3826         if (nvme == NULL)
3827                 return (ENXIO);
3828 
3829         if (nsid > nvme->n_namespace_count)
3830                 return (ENXIO);
3831 
3832         if (IS_DEVCTL(cmd))
3833                 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3834 
3835 #ifdef _MULTI_DATAMODEL
3836         switch (ddi_model_convert_from(mode & FMODELS)) {
3837         case DDI_MODEL_ILP32: {
3838                 nvme_ioctl32_t nioc32;
3839                 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3840                     mode) != 0)
3841                         return (EFAULT);
3842                 nioc.n_len = nioc32.n_len;
3843                 nioc.n_buf = nioc32.n_buf;
3844                 nioc.n_arg = nioc32.n_arg;
3845                 break;
3846         }
3847         case DDI_MODEL_NONE:
3848 #endif
3849                 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3850                     != 0)
3851                         return (EFAULT);
3852 #ifdef _MULTI_DATAMODEL
3853                 break;
3854         }
3855 #endif
3856 
3857         if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3858                 /*
3859                  * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3860                  * attachment point nodes.
3861                  */
3862                 nsid = 0;
3863         } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3864                 /*
3865                  * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3866                  * will always return identify data for namespace 1.
3867                  */
3868                 nsid = 1;
3869         }
3870 
3871         if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3872                 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3873                     cred_p);
3874         else
3875                 rv = EINVAL;
3876 
3877 #ifdef _MULTI_DATAMODEL
3878         switch (ddi_model_convert_from(mode & FMODELS)) {
3879         case DDI_MODEL_ILP32: {
3880                 nvme_ioctl32_t nioc32;
3881 
3882                 nioc32.n_len = (size32_t)nioc.n_len;
3883                 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3884                 nioc32.n_arg = nioc.n_arg;
3885 
3886                 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3887                     mode) != 0)
3888                         return (EFAULT);
3889                 break;
3890         }
3891         case DDI_MODEL_NONE:
3892 #endif
3893                 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3894                     != 0)
3895                         return (EFAULT);
3896 #ifdef _MULTI_DATAMODEL
3897                 break;
3898         }
3899 #endif
3900 
3901         return (rv);
3902 }