Print this page
8631 only 16 NVMe controllers usable per system due to 18bit minor number limit
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/io/nvme/nvme.c
+++ new/usr/src/uts/common/io/nvme/nvme.c
1 1 /*
2 2 * This file and its contents are supplied under the terms of the
3 3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 4 * You may only use this file in accordance with the terms of version
5 5 * 1.0 of the CDDL.
6 6 *
7 7 * A full copy of the text of the CDDL should have accompanied this
8 8 * source. A copy of the CDDL is also available via the Internet at
9 9 * http://www.illumos.org/license/CDDL.
10 10 */
11 11
12 12 /*
13 13 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14 14 * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15 15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved.
16 16 * Copyright 2017 Joyent, Inc.
17 17 */
18 18
19 19 /*
20 20 * blkdev driver for NVMe compliant storage devices
21 21 *
22 22 * This driver was written to conform to version 1.2.1 of the NVMe
23 23 * specification. It may work with newer versions, but that is completely
24 24 * untested and disabled by default.
25 25 *
26 26 * The driver has only been tested on x86 systems and will not work on big-
27 27 * endian systems without changes to the code accessing registers and data
28 28 * structures used by the hardware.
29 29 *
30 30 *
31 31 * Interrupt Usage:
32 32 *
33 33 * The driver will use a single interrupt while configuring the device as the
34 34 * specification requires, but contrary to the specification it will try to use
35 35 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36 36 * will switch to multiple-message MSI(-X) if supported. The driver wants to
37 37 * have one interrupt vector per CPU, but it will work correctly if less are
38 38 * available. Interrupts can be shared by queues, the interrupt handler will
39 39 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40 40 * the admin queue will share an interrupt with one I/O queue. The interrupt
41 41 * handler will retrieve completed commands from all queues sharing an interrupt
42 42 * vector and will post them to a taskq for completion processing.
43 43 *
44 44 *
45 45 * Command Processing:
46 46 *
47 47 * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
48 48 * to 65536 I/O commands. The driver will configure one I/O queue pair per
49 49 * available interrupt vector, with the queue length usually much smaller than
50 50 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51 51 * interrupt vectors will be used.
52 52 *
53 53 * Additionally the hardware provides a single special admin queue pair that can
54 54 * hold up to 4096 admin commands.
55 55 *
56 56 * From the hardware perspective both queues of a queue pair are independent,
57 57 * but they share some driver state: the command array (holding pointers to
58 58 * commands currently being processed by the hardware) and the active command
59 59 * counter. Access to the submission side of a queue pair and the shared state
60 60 * is protected by nq_mutex. The completion side of a queue pair does not need
61 61 * that protection apart from its access to the shared state; it is called only
62 62 * in the interrupt handler which does not run concurrently for the same
63 63 * interrupt vector.
64 64 *
65 65 * When a command is submitted to a queue pair the active command counter is
66 66 * incremented and a pointer to the command is stored in the command array. The
67 67 * array index is used as command identifier (CID) in the submission queue
68 68 * entry. Some commands may take a very long time to complete, and if the queue
69 69 * wraps around in that time a submission may find the next array slot to still
70 70 * be used by a long-running command. In this case the array is sequentially
71 71 * searched for the next free slot. The length of the command array is the same
72 72 * as the configured queue length.
73 73 *
74 74 *
75 75 * Polled I/O Support:
76 76 *
77 77 * For kernel core dump support the driver can do polled I/O. As interrupts are
78 78 * turned off while dumping the driver will just submit a command in the regular
79 79 * way, and then repeatedly attempt a command retrieval until it gets the
80 80 * command back.
81 81 *
82 82 *
83 83 * Namespace Support:
84 84 *
85 85 * NVMe devices can have multiple namespaces, each being a independent data
86 86 * store. The driver supports multiple namespaces and creates a blkdev interface
87 87 * for each namespace found. Namespaces can have various attributes to support
88 88 * thin provisioning and protection information. This driver does not support
89 89 * any of this and ignores namespaces that have these attributes.
90 90 *
91 91 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
92 92 * (EUI64). This driver uses the EUI64 if present to generate the devid and
93 93 * passes it to blkdev to use it in the device node names. As this is currently
94 94 * untested namespaces with EUI64 are ignored by default.
95 95 *
96 96 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
97 97 * single controller. This is an artificial limit imposed by the driver to be
98 98 * able to address a reasonable number of controllers and namespaces using a
99 99 * 32bit minor node number.
100 100 *
101 101 *
102 102 * Minor nodes:
103 103 *
104 104 * For each NVMe device the driver exposes one minor node for the controller and
105 105 * one minor node for each namespace. The only operations supported by those
106 106 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
107 107 * interface for the nvmeadm(1M) utility.
108 108 *
109 109 *
110 110 * Blkdev Interface:
111 111 *
112 112 * This driver uses blkdev to do all the heavy lifting involved with presenting
113 113 * a disk device to the system. As a result, the processing of I/O requests is
114 114 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
115 115 * setup, and splitting of transfers into manageable chunks.
116 116 *
117 117 * I/O requests coming in from blkdev are turned into NVM commands and posted to
118 118 * an I/O queue. The queue is selected by taking the CPU id modulo the number of
119 119 * queues. There is currently no timeout handling of I/O commands.
120 120 *
121 121 * Blkdev also supports querying device/media information and generating a
122 122 * devid. The driver reports the best block size as determined by the namespace
123 123 * format back to blkdev as physical block size to support partition and block
124 124 * alignment. The devid is either based on the namespace EUI64, if present, or
125 125 * composed using the device vendor ID, model number, serial number, and the
126 126 * namespace ID.
127 127 *
128 128 *
129 129 * Error Handling:
130 130 *
131 131 * Error handling is currently limited to detecting fatal hardware errors,
132 132 * either by asynchronous events, or synchronously through command status or
133 133 * admin command timeouts. In case of severe errors the device is fenced off,
134 134 * all further requests will return EIO. FMA is then called to fault the device.
135 135 *
136 136 * The hardware has a limit for outstanding asynchronous event requests. Before
137 137 * this limit is known the driver assumes it is at least 1 and posts a single
138 138 * asynchronous request. Later when the limit is known more asynchronous event
139 139 * requests are posted to allow quicker reception of error information. When an
140 140 * asynchronous event is posted by the hardware the driver will parse the error
141 141 * status fields and log information or fault the device, depending on the
142 142 * severity of the asynchronous event. The asynchronous event request is then
143 143 * reused and posted to the admin queue again.
144 144 *
145 145 * On command completion the command status is checked for errors. In case of
146 146 * errors indicating a driver bug the driver panics. Almost all other error
147 147 * status values just cause EIO to be returned.
148 148 *
149 149 * Command timeouts are currently detected for all admin commands except
150 150 * asynchronous event requests. If a command times out and the hardware appears
151 151 * to be healthy the driver attempts to abort the command. If this fails the
152 152 * driver assumes the device to be dead, fences it off, and calls FMA to retire
153 153 * it. In general admin commands are issued at attach time only. No timeout
154 154 * handling of normal I/O commands is presently done.
155 155 *
156 156 * In some cases it may be possible that the ABORT command times out, too. In
157 157 * that case the device is also declared dead and fenced off.
158 158 *
159 159 *
160 160 * Quiesce / Fast Reboot:
161 161 *
162 162 * The driver currently does not support fast reboot. A quiesce(9E) entry point
163 163 * is still provided which is used to send a shutdown notification to the
164 164 * device.
165 165 *
166 166 *
167 167 * Driver Configuration:
168 168 *
169 169 * The following driver properties can be changed to control some aspects of the
170 170 * drivers operation:
171 171 * - strict-version: can be set to 0 to allow devices conforming to newer
172 172 * versions or namespaces with EUI64 to be used
173 173 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
174 174 * specific command status as a fatal error leading device faulting
175 175 * - admin-queue-len: the maximum length of the admin queue (16-4096)
176 176 * - io-queue-len: the maximum length of the I/O queues (16-65536)
177 177 * - async-event-limit: the maximum number of asynchronous event requests to be
178 178 * posted by the driver
179 179 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
180 180 * cache
181 181 * - min-phys-block-size: the minimum physical block size to report to blkdev,
182 182 * which is among other things the basis for ZFS vdev ashift
183 183 *
184 184 *
185 185 * TODO:
186 186 * - figure out sane default for I/O queue depth reported to blkdev
187 187 * - FMA handling of media errors
188 188 * - support for devices supporting very large I/O requests using chained PRPs
189 189 * - support for configuring hardware parameters like interrupt coalescing
190 190 * - support for media formatting and hard partitioning into namespaces
191 191 * - support for big-endian systems
192 192 * - support for fast reboot
193 193 * - support for firmware updates
194 194 * - support for NVMe Subsystem Reset (1.1)
195 195 * - support for Scatter/Gather lists (1.1)
196 196 * - support for Reservations (1.1)
197 197 * - support for power management
198 198 */
199 199
200 200 #include <sys/byteorder.h>
201 201 #ifdef _BIG_ENDIAN
202 202 #error nvme driver needs porting for big-endian platforms
203 203 #endif
204 204
205 205 #include <sys/modctl.h>
206 206 #include <sys/conf.h>
207 207 #include <sys/devops.h>
208 208 #include <sys/ddi.h>
209 209 #include <sys/sunddi.h>
210 210 #include <sys/sunndi.h>
211 211 #include <sys/bitmap.h>
212 212 #include <sys/sysmacros.h>
213 213 #include <sys/param.h>
214 214 #include <sys/varargs.h>
215 215 #include <sys/cpuvar.h>
216 216 #include <sys/disp.h>
217 217 #include <sys/blkdev.h>
218 218 #include <sys/atomic.h>
219 219 #include <sys/archsystm.h>
220 220 #include <sys/sata/sata_hba.h>
221 221 #include <sys/stat.h>
222 222 #include <sys/policy.h>
223 223
224 224 #include <sys/nvme.h>
225 225
226 226 #ifdef __x86
227 227 #include <sys/x86_archext.h>
228 228 #endif
229 229
230 230 #include "nvme_reg.h"
231 231 #include "nvme_var.h"
232 232
233 233
234 234 /* NVMe spec version supported */
235 235 static const int nvme_version_major = 1;
236 236 static const int nvme_version_minor = 2;
237 237
238 238 /* tunable for admin command timeout in seconds, default is 1s */
239 239 int nvme_admin_cmd_timeout = 1;
240 240
241 241 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
242 242 int nvme_format_cmd_timeout = 600;
243 243
244 244 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
245 245 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
246 246 static int nvme_quiesce(dev_info_t *);
247 247 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
248 248 static int nvme_setup_interrupts(nvme_t *, int, int);
249 249 static void nvme_release_interrupts(nvme_t *);
250 250 static uint_t nvme_intr(caddr_t, caddr_t);
251 251
252 252 static void nvme_shutdown(nvme_t *, int, boolean_t);
253 253 static boolean_t nvme_reset(nvme_t *, boolean_t);
254 254 static int nvme_init(nvme_t *);
255 255 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
256 256 static void nvme_free_cmd(nvme_cmd_t *);
257 257 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
258 258 bd_xfer_t *);
259 259 static int nvme_admin_cmd(nvme_cmd_t *, int);
260 260 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
261 261 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
262 262 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
263 263 static void nvme_wakeup_cmd(void *);
264 264 static void nvme_async_event_task(void *);
265 265
266 266 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
267 267 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
268 268 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
269 269 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
270 270 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
271 271 static inline int nvme_check_cmd_status(nvme_cmd_t *);
272 272
273 273 static void nvme_abort_cmd(nvme_cmd_t *);
274 274 static int nvme_async_event(nvme_t *);
275 275 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
276 276 boolean_t, uint8_t);
277 277 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
278 278 static void *nvme_identify(nvme_t *, uint32_t);
279 279 static boolean_t nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
280 280 uint32_t *);
281 281 static boolean_t nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
282 282 void **, size_t *);
283 283 static boolean_t nvme_write_cache_set(nvme_t *, boolean_t);
284 284 static int nvme_set_nqueues(nvme_t *, uint16_t);
285 285
286 286 static void nvme_free_dma(nvme_dma_t *);
287 287 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
288 288 nvme_dma_t **);
289 289 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
290 290 nvme_dma_t **);
291 291 static void nvme_free_qpair(nvme_qpair_t *);
292 292 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
293 293 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
294 294
295 295 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
296 296 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
297 297 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
298 298 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
299 299
300 300 static boolean_t nvme_check_regs_hdl(nvme_t *);
301 301 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
302 302
303 303 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
304 304
305 305 static void nvme_bd_xfer_done(void *);
306 306 static void nvme_bd_driveinfo(void *, bd_drive_t *);
307 307 static int nvme_bd_mediainfo(void *, bd_media_t *);
308 308 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
309 309 static int nvme_bd_read(void *, bd_xfer_t *);
310 310 static int nvme_bd_write(void *, bd_xfer_t *);
311 311 static int nvme_bd_sync(void *, bd_xfer_t *);
312 312 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
↓ open down ↓ |
312 lines elided |
↑ open up ↑ |
313 313
314 314 static int nvme_prp_dma_constructor(void *, void *, int);
315 315 static void nvme_prp_dma_destructor(void *, void *);
316 316
317 317 static void nvme_prepare_devid(nvme_t *, uint32_t);
318 318
319 319 static int nvme_open(dev_t *, int, int, cred_t *);
320 320 static int nvme_close(dev_t, int, int, cred_t *);
321 321 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
322 322
323 -#define NVME_MINOR_INST_SHIFT 14
323 +#define NVME_MINOR_INST_SHIFT 9
324 324 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
325 325 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT)
326 326 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
327 327 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2)
328 328
329 329 static void *nvme_state;
330 330 static kmem_cache_t *nvme_cmd_cache;
331 331
332 332 /*
333 333 * DMA attributes for queue DMA memory
334 334 *
335 335 * Queue DMA memory must be page aligned. The maximum length of a queue is
336 336 * 65536 entries, and an entry can be 64 bytes long.
337 337 */
338 338 static ddi_dma_attr_t nvme_queue_dma_attr = {
339 339 .dma_attr_version = DMA_ATTR_V0,
340 340 .dma_attr_addr_lo = 0,
341 341 .dma_attr_addr_hi = 0xffffffffffffffffULL,
342 342 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
343 343 .dma_attr_align = 0x1000,
344 344 .dma_attr_burstsizes = 0x7ff,
345 345 .dma_attr_minxfer = 0x1000,
346 346 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
347 347 .dma_attr_seg = 0xffffffffffffffffULL,
348 348 .dma_attr_sgllen = 1,
349 349 .dma_attr_granular = 1,
350 350 .dma_attr_flags = 0,
351 351 };
352 352
353 353 /*
354 354 * DMA attributes for transfers using Physical Region Page (PRP) entries
355 355 *
356 356 * A PRP entry describes one page of DMA memory using the page size specified
357 357 * in the controller configuration's memory page size register (CC.MPS). It uses
358 358 * a 64bit base address aligned to this page size. There is no limitation on
359 359 * chaining PRPs together for arbitrarily large DMA transfers.
360 360 */
361 361 static ddi_dma_attr_t nvme_prp_dma_attr = {
362 362 .dma_attr_version = DMA_ATTR_V0,
363 363 .dma_attr_addr_lo = 0,
364 364 .dma_attr_addr_hi = 0xffffffffffffffffULL,
365 365 .dma_attr_count_max = 0xfff,
366 366 .dma_attr_align = 0x1000,
367 367 .dma_attr_burstsizes = 0x7ff,
368 368 .dma_attr_minxfer = 0x1000,
369 369 .dma_attr_maxxfer = 0x1000,
370 370 .dma_attr_seg = 0xfff,
371 371 .dma_attr_sgllen = -1,
372 372 .dma_attr_granular = 1,
373 373 .dma_attr_flags = 0,
374 374 };
375 375
376 376 /*
377 377 * DMA attributes for transfers using scatter/gather lists
378 378 *
379 379 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
380 380 * 32bit length field. SGL Segment and SGL Last Segment entries require the
381 381 * length to be a multiple of 16 bytes.
382 382 */
383 383 static ddi_dma_attr_t nvme_sgl_dma_attr = {
384 384 .dma_attr_version = DMA_ATTR_V0,
385 385 .dma_attr_addr_lo = 0,
386 386 .dma_attr_addr_hi = 0xffffffffffffffffULL,
387 387 .dma_attr_count_max = 0xffffffffUL,
388 388 .dma_attr_align = 1,
389 389 .dma_attr_burstsizes = 0x7ff,
390 390 .dma_attr_minxfer = 0x10,
391 391 .dma_attr_maxxfer = 0xfffffffffULL,
392 392 .dma_attr_seg = 0xffffffffffffffffULL,
393 393 .dma_attr_sgllen = -1,
394 394 .dma_attr_granular = 0x10,
395 395 .dma_attr_flags = 0
396 396 };
397 397
398 398 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
399 399 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
400 400 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
401 401 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
402 402 };
403 403
404 404 static struct cb_ops nvme_cb_ops = {
405 405 .cb_open = nvme_open,
406 406 .cb_close = nvme_close,
407 407 .cb_strategy = nodev,
408 408 .cb_print = nodev,
409 409 .cb_dump = nodev,
410 410 .cb_read = nodev,
411 411 .cb_write = nodev,
412 412 .cb_ioctl = nvme_ioctl,
413 413 .cb_devmap = nodev,
414 414 .cb_mmap = nodev,
415 415 .cb_segmap = nodev,
416 416 .cb_chpoll = nochpoll,
417 417 .cb_prop_op = ddi_prop_op,
418 418 .cb_str = 0,
419 419 .cb_flag = D_NEW | D_MP,
420 420 .cb_rev = CB_REV,
421 421 .cb_aread = nodev,
422 422 .cb_awrite = nodev
423 423 };
424 424
425 425 static struct dev_ops nvme_dev_ops = {
426 426 .devo_rev = DEVO_REV,
427 427 .devo_refcnt = 0,
428 428 .devo_getinfo = ddi_no_info,
429 429 .devo_identify = nulldev,
430 430 .devo_probe = nulldev,
431 431 .devo_attach = nvme_attach,
432 432 .devo_detach = nvme_detach,
433 433 .devo_reset = nodev,
434 434 .devo_cb_ops = &nvme_cb_ops,
435 435 .devo_bus_ops = NULL,
436 436 .devo_power = NULL,
437 437 .devo_quiesce = nvme_quiesce,
438 438 };
439 439
440 440 static struct modldrv nvme_modldrv = {
441 441 .drv_modops = &mod_driverops,
442 442 .drv_linkinfo = "NVMe v1.1b",
443 443 .drv_dev_ops = &nvme_dev_ops
444 444 };
445 445
446 446 static struct modlinkage nvme_modlinkage = {
447 447 .ml_rev = MODREV_1,
448 448 .ml_linkage = { &nvme_modldrv, NULL }
449 449 };
450 450
451 451 static bd_ops_t nvme_bd_ops = {
452 452 .o_version = BD_OPS_VERSION_0,
453 453 .o_drive_info = nvme_bd_driveinfo,
454 454 .o_media_info = nvme_bd_mediainfo,
455 455 .o_devid_init = nvme_bd_devid,
456 456 .o_sync_cache = nvme_bd_sync,
457 457 .o_read = nvme_bd_read,
458 458 .o_write = nvme_bd_write,
459 459 };
460 460
461 461 int
462 462 _init(void)
463 463 {
464 464 int error;
465 465
466 466 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
467 467 if (error != DDI_SUCCESS)
468 468 return (error);
469 469
470 470 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
471 471 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
472 472
473 473 bd_mod_init(&nvme_dev_ops);
474 474
475 475 error = mod_install(&nvme_modlinkage);
476 476 if (error != DDI_SUCCESS) {
477 477 ddi_soft_state_fini(&nvme_state);
478 478 bd_mod_fini(&nvme_dev_ops);
479 479 }
480 480
481 481 return (error);
482 482 }
483 483
484 484 int
485 485 _fini(void)
486 486 {
487 487 int error;
488 488
489 489 error = mod_remove(&nvme_modlinkage);
490 490 if (error == DDI_SUCCESS) {
491 491 ddi_soft_state_fini(&nvme_state);
492 492 kmem_cache_destroy(nvme_cmd_cache);
493 493 bd_mod_fini(&nvme_dev_ops);
494 494 }
495 495
496 496 return (error);
497 497 }
498 498
499 499 int
500 500 _info(struct modinfo *modinfop)
501 501 {
502 502 return (mod_info(&nvme_modlinkage, modinfop));
503 503 }
504 504
505 505 static inline void
506 506 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
507 507 {
508 508 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
509 509
510 510 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
511 511 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
512 512 }
513 513
514 514 static inline void
515 515 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
516 516 {
517 517 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
518 518
519 519 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
520 520 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
521 521 }
522 522
523 523 static inline uint64_t
524 524 nvme_get64(nvme_t *nvme, uintptr_t reg)
525 525 {
526 526 uint64_t val;
527 527
528 528 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
529 529
530 530 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
531 531 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
532 532
533 533 return (val);
534 534 }
535 535
536 536 static inline uint32_t
537 537 nvme_get32(nvme_t *nvme, uintptr_t reg)
538 538 {
539 539 uint32_t val;
540 540
541 541 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
542 542
543 543 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
544 544 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
545 545
546 546 return (val);
547 547 }
548 548
549 549 static boolean_t
550 550 nvme_check_regs_hdl(nvme_t *nvme)
551 551 {
552 552 ddi_fm_error_t error;
553 553
554 554 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
555 555
556 556 if (error.fme_status != DDI_FM_OK)
557 557 return (B_TRUE);
558 558
559 559 return (B_FALSE);
560 560 }
561 561
562 562 static boolean_t
563 563 nvme_check_dma_hdl(nvme_dma_t *dma)
564 564 {
565 565 ddi_fm_error_t error;
566 566
567 567 if (dma == NULL)
568 568 return (B_FALSE);
569 569
570 570 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
571 571
572 572 if (error.fme_status != DDI_FM_OK)
573 573 return (B_TRUE);
574 574
575 575 return (B_FALSE);
576 576 }
577 577
578 578 static void
579 579 nvme_free_dma_common(nvme_dma_t *dma)
580 580 {
581 581 if (dma->nd_dmah != NULL)
582 582 (void) ddi_dma_unbind_handle(dma->nd_dmah);
583 583 if (dma->nd_acch != NULL)
584 584 ddi_dma_mem_free(&dma->nd_acch);
585 585 if (dma->nd_dmah != NULL)
586 586 ddi_dma_free_handle(&dma->nd_dmah);
587 587 }
588 588
589 589 static void
590 590 nvme_free_dma(nvme_dma_t *dma)
591 591 {
592 592 nvme_free_dma_common(dma);
593 593 kmem_free(dma, sizeof (*dma));
594 594 }
595 595
596 596 /* ARGSUSED */
597 597 static void
598 598 nvme_prp_dma_destructor(void *buf, void *private)
599 599 {
600 600 nvme_dma_t *dma = (nvme_dma_t *)buf;
601 601
602 602 nvme_free_dma_common(dma);
603 603 }
604 604
605 605 static int
606 606 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
607 607 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
608 608 {
609 609 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
610 610 &dma->nd_dmah) != DDI_SUCCESS) {
611 611 /*
612 612 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
613 613 * the only other possible error is DDI_DMA_BADATTR which
614 614 * indicates a driver bug which should cause a panic.
615 615 */
616 616 dev_err(nvme->n_dip, CE_PANIC,
617 617 "!failed to get DMA handle, check DMA attributes");
618 618 return (DDI_FAILURE);
619 619 }
620 620
621 621 /*
622 622 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
623 623 * or the flags are conflicting, which isn't the case here.
624 624 */
625 625 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
626 626 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
627 627 &dma->nd_len, &dma->nd_acch);
628 628
629 629 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
630 630 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
631 631 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
632 632 dev_err(nvme->n_dip, CE_WARN,
633 633 "!failed to bind DMA memory");
634 634 atomic_inc_32(&nvme->n_dma_bind_err);
635 635 nvme_free_dma_common(dma);
636 636 return (DDI_FAILURE);
637 637 }
638 638
639 639 return (DDI_SUCCESS);
640 640 }
641 641
642 642 static int
643 643 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
644 644 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
645 645 {
646 646 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
647 647
648 648 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
649 649 DDI_SUCCESS) {
650 650 *ret = NULL;
651 651 kmem_free(dma, sizeof (nvme_dma_t));
652 652 return (DDI_FAILURE);
653 653 }
654 654
655 655 bzero(dma->nd_memp, dma->nd_len);
656 656
657 657 *ret = dma;
658 658 return (DDI_SUCCESS);
659 659 }
660 660
661 661 /* ARGSUSED */
662 662 static int
663 663 nvme_prp_dma_constructor(void *buf, void *private, int flags)
664 664 {
665 665 nvme_dma_t *dma = (nvme_dma_t *)buf;
666 666 nvme_t *nvme = (nvme_t *)private;
667 667
668 668 dma->nd_dmah = NULL;
669 669 dma->nd_acch = NULL;
670 670
671 671 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
672 672 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
673 673 return (-1);
674 674 }
675 675
676 676 ASSERT(dma->nd_ncookie == 1);
677 677
678 678 dma->nd_cached = B_TRUE;
679 679
680 680 return (0);
681 681 }
682 682
683 683 static int
684 684 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
685 685 uint_t flags, nvme_dma_t **dma)
686 686 {
687 687 uint32_t len = nentry * qe_len;
688 688 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
689 689
690 690 len = roundup(len, nvme->n_pagesize);
691 691
692 692 q_dma_attr.dma_attr_minxfer = len;
693 693
694 694 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
695 695 != DDI_SUCCESS) {
696 696 dev_err(nvme->n_dip, CE_WARN,
697 697 "!failed to get DMA memory for queue");
698 698 goto fail;
699 699 }
700 700
701 701 if ((*dma)->nd_ncookie != 1) {
702 702 dev_err(nvme->n_dip, CE_WARN,
703 703 "!got too many cookies for queue DMA");
704 704 goto fail;
705 705 }
706 706
707 707 return (DDI_SUCCESS);
708 708
709 709 fail:
710 710 if (*dma) {
711 711 nvme_free_dma(*dma);
712 712 *dma = NULL;
713 713 }
714 714
715 715 return (DDI_FAILURE);
716 716 }
717 717
718 718 static void
719 719 nvme_free_qpair(nvme_qpair_t *qp)
720 720 {
721 721 int i;
722 722
723 723 mutex_destroy(&qp->nq_mutex);
724 724
725 725 if (qp->nq_sqdma != NULL)
726 726 nvme_free_dma(qp->nq_sqdma);
727 727 if (qp->nq_cqdma != NULL)
728 728 nvme_free_dma(qp->nq_cqdma);
729 729
730 730 if (qp->nq_active_cmds > 0)
731 731 for (i = 0; i != qp->nq_nentry; i++)
732 732 if (qp->nq_cmd[i] != NULL)
733 733 nvme_free_cmd(qp->nq_cmd[i]);
734 734
735 735 if (qp->nq_cmd != NULL)
736 736 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
737 737
738 738 kmem_free(qp, sizeof (nvme_qpair_t));
739 739 }
740 740
741 741 static int
742 742 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
743 743 int idx)
744 744 {
745 745 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
746 746
747 747 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
748 748 DDI_INTR_PRI(nvme->n_intr_pri));
749 749
750 750 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
751 751 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
752 752 goto fail;
753 753
754 754 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
755 755 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
756 756 goto fail;
757 757
758 758 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
759 759 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
760 760 qp->nq_nentry = nentry;
761 761
762 762 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
763 763 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
764 764
765 765 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
766 766 qp->nq_next_cmd = 0;
767 767
768 768 *nqp = qp;
769 769 return (DDI_SUCCESS);
770 770
771 771 fail:
772 772 nvme_free_qpair(qp);
773 773 *nqp = NULL;
774 774
775 775 return (DDI_FAILURE);
776 776 }
777 777
778 778 static nvme_cmd_t *
779 779 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
780 780 {
781 781 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
782 782
783 783 if (cmd == NULL)
784 784 return (cmd);
785 785
786 786 bzero(cmd, sizeof (nvme_cmd_t));
787 787
788 788 cmd->nc_nvme = nvme;
789 789
790 790 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
791 791 DDI_INTR_PRI(nvme->n_intr_pri));
792 792 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
793 793
794 794 return (cmd);
795 795 }
796 796
797 797 static void
798 798 nvme_free_cmd(nvme_cmd_t *cmd)
799 799 {
800 800 if (cmd->nc_dma) {
801 801 if (cmd->nc_dma->nd_cached)
802 802 kmem_cache_free(cmd->nc_nvme->n_prp_cache,
803 803 cmd->nc_dma);
804 804 else
805 805 nvme_free_dma(cmd->nc_dma);
806 806 cmd->nc_dma = NULL;
807 807 }
808 808
809 809 cv_destroy(&cmd->nc_cv);
810 810 mutex_destroy(&cmd->nc_mutex);
811 811
812 812 kmem_cache_free(nvme_cmd_cache, cmd);
813 813 }
814 814
815 815 static int
816 816 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
817 817 {
818 818 nvme_reg_sqtdbl_t tail = { 0 };
819 819
820 820 mutex_enter(&qp->nq_mutex);
821 821
822 822 if (qp->nq_active_cmds == qp->nq_nentry) {
823 823 mutex_exit(&qp->nq_mutex);
824 824 return (DDI_FAILURE);
825 825 }
826 826
827 827 cmd->nc_completed = B_FALSE;
828 828
829 829 /*
830 830 * Try to insert the cmd into the active cmd array at the nq_next_cmd
831 831 * slot. If the slot is already occupied advance to the next slot and
832 832 * try again. This can happen for long running commands like async event
833 833 * requests.
834 834 */
835 835 while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
836 836 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
837 837 qp->nq_cmd[qp->nq_next_cmd] = cmd;
838 838
839 839 qp->nq_active_cmds++;
840 840
841 841 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
842 842 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
843 843 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
844 844 sizeof (nvme_sqe_t) * qp->nq_sqtail,
845 845 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
846 846 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
847 847
848 848 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
849 849 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
850 850
851 851 mutex_exit(&qp->nq_mutex);
852 852 return (DDI_SUCCESS);
853 853 }
854 854
855 855 static nvme_cmd_t *
856 856 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
857 857 {
858 858 nvme_reg_cqhdbl_t head = { 0 };
859 859
860 860 nvme_cqe_t *cqe;
861 861 nvme_cmd_t *cmd;
862 862
863 863 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
864 864 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
865 865
866 866 mutex_enter(&qp->nq_mutex);
867 867 cqe = &qp->nq_cq[qp->nq_cqhead];
868 868
869 869 /* Check phase tag of CQE. Hardware inverts it for new entries. */
870 870 if (cqe->cqe_sf.sf_p == qp->nq_phase) {
871 871 mutex_exit(&qp->nq_mutex);
872 872 return (NULL);
873 873 }
874 874
875 875 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
876 876 ASSERT(cqe->cqe_cid < qp->nq_nentry);
877 877
878 878 cmd = qp->nq_cmd[cqe->cqe_cid];
879 879 qp->nq_cmd[cqe->cqe_cid] = NULL;
880 880 qp->nq_active_cmds--;
881 881
882 882 ASSERT(cmd != NULL);
883 883 ASSERT(cmd->nc_nvme == nvme);
884 884 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
885 885 ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
886 886 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
887 887
888 888 qp->nq_sqhead = cqe->cqe_sqhd;
889 889
890 890 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
891 891
892 892 /* Toggle phase on wrap-around. */
893 893 if (qp->nq_cqhead == 0)
894 894 qp->nq_phase = qp->nq_phase ? 0 : 1;
895 895
896 896 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
897 897 mutex_exit(&qp->nq_mutex);
898 898
899 899 return (cmd);
900 900 }
901 901
902 902 static int
903 903 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
904 904 {
905 905 nvme_cqe_t *cqe = &cmd->nc_cqe;
906 906
907 907 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
908 908 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
909 909 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
910 910 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
911 911 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
912 912
913 913 if (cmd->nc_xfer != NULL)
914 914 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
915 915
916 916 if (cmd->nc_nvme->n_strict_version) {
917 917 cmd->nc_nvme->n_dead = B_TRUE;
918 918 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
919 919 }
920 920
921 921 return (EIO);
922 922 }
923 923
924 924 static int
925 925 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
926 926 {
927 927 nvme_cqe_t *cqe = &cmd->nc_cqe;
928 928
929 929 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
930 930 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
931 931 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
932 932 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
933 933 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
934 934 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
935 935 cmd->nc_nvme->n_dead = B_TRUE;
936 936 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
937 937 }
938 938
939 939 return (EIO);
940 940 }
941 941
942 942 static int
943 943 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
944 944 {
945 945 nvme_cqe_t *cqe = &cmd->nc_cqe;
946 946
947 947 switch (cqe->cqe_sf.sf_sc) {
948 948 case NVME_CQE_SC_INT_NVM_WRITE:
949 949 /* write fail */
950 950 /* TODO: post ereport */
951 951 if (cmd->nc_xfer != NULL)
952 952 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
953 953 return (EIO);
954 954
955 955 case NVME_CQE_SC_INT_NVM_READ:
956 956 /* read fail */
957 957 /* TODO: post ereport */
958 958 if (cmd->nc_xfer != NULL)
959 959 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
960 960 return (EIO);
961 961
962 962 default:
963 963 return (nvme_check_unknown_cmd_status(cmd));
964 964 }
965 965 }
966 966
967 967 static int
968 968 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
969 969 {
970 970 nvme_cqe_t *cqe = &cmd->nc_cqe;
971 971
972 972 switch (cqe->cqe_sf.sf_sc) {
973 973 case NVME_CQE_SC_GEN_SUCCESS:
974 974 return (0);
975 975
976 976 /*
977 977 * Errors indicating a bug in the driver should cause a panic.
978 978 */
979 979 case NVME_CQE_SC_GEN_INV_OPC:
980 980 /* Invalid Command Opcode */
981 981 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
982 982 "invalid opcode in cmd %p", (void *)cmd);
983 983 return (0);
984 984
985 985 case NVME_CQE_SC_GEN_INV_FLD:
986 986 /* Invalid Field in Command */
987 987 if (!cmd->nc_dontpanic)
988 988 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
989 989 "programming error: invalid field in cmd %p",
990 990 (void *)cmd);
991 991 return (EIO);
992 992
993 993 case NVME_CQE_SC_GEN_ID_CNFL:
994 994 /* Command ID Conflict */
995 995 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
996 996 "cmd ID conflict in cmd %p", (void *)cmd);
997 997 return (0);
998 998
999 999 case NVME_CQE_SC_GEN_INV_NS:
1000 1000 /* Invalid Namespace or Format */
1001 1001 if (!cmd->nc_dontpanic)
1002 1002 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1003 1003 "programming error: " "invalid NS/format in cmd %p",
1004 1004 (void *)cmd);
1005 1005 return (EINVAL);
1006 1006
1007 1007 case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1008 1008 /* LBA Out Of Range */
1009 1009 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1010 1010 "LBA out of range in cmd %p", (void *)cmd);
1011 1011 return (0);
1012 1012
1013 1013 /*
1014 1014 * Non-fatal errors, handle gracefully.
1015 1015 */
1016 1016 case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1017 1017 /* Data Transfer Error (DMA) */
1018 1018 /* TODO: post ereport */
1019 1019 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1020 1020 if (cmd->nc_xfer != NULL)
1021 1021 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1022 1022 return (EIO);
1023 1023
1024 1024 case NVME_CQE_SC_GEN_INTERNAL_ERR:
1025 1025 /*
1026 1026 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1027 1027 * detailed error information is returned as async event,
1028 1028 * so we pretty much ignore the error here and handle it
1029 1029 * in the async event handler.
1030 1030 */
1031 1031 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1032 1032 if (cmd->nc_xfer != NULL)
1033 1033 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1034 1034 return (EIO);
1035 1035
1036 1036 case NVME_CQE_SC_GEN_ABORT_REQUEST:
1037 1037 /*
1038 1038 * Command Abort Requested. This normally happens only when a
1039 1039 * command times out.
1040 1040 */
1041 1041 /* TODO: post ereport or change blkdev to handle this? */
1042 1042 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1043 1043 return (ECANCELED);
1044 1044
1045 1045 case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1046 1046 /* Command Aborted due to Power Loss Notification */
1047 1047 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1048 1048 cmd->nc_nvme->n_dead = B_TRUE;
1049 1049 return (EIO);
1050 1050
1051 1051 case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1052 1052 /* Command Aborted due to SQ Deletion */
1053 1053 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1054 1054 return (EIO);
1055 1055
1056 1056 case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1057 1057 /* Capacity Exceeded */
1058 1058 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1059 1059 if (cmd->nc_xfer != NULL)
1060 1060 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1061 1061 return (EIO);
1062 1062
1063 1063 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1064 1064 /* Namespace Not Ready */
1065 1065 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1066 1066 if (cmd->nc_xfer != NULL)
1067 1067 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1068 1068 return (EIO);
1069 1069
1070 1070 default:
1071 1071 return (nvme_check_unknown_cmd_status(cmd));
1072 1072 }
1073 1073 }
1074 1074
1075 1075 static int
1076 1076 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1077 1077 {
1078 1078 nvme_cqe_t *cqe = &cmd->nc_cqe;
1079 1079
1080 1080 switch (cqe->cqe_sf.sf_sc) {
1081 1081 case NVME_CQE_SC_SPC_INV_CQ:
1082 1082 /* Completion Queue Invalid */
1083 1083 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1084 1084 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1085 1085 return (EINVAL);
1086 1086
1087 1087 case NVME_CQE_SC_SPC_INV_QID:
1088 1088 /* Invalid Queue Identifier */
1089 1089 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1090 1090 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1091 1091 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1092 1092 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1093 1093 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1094 1094 return (EINVAL);
1095 1095
1096 1096 case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1097 1097 /* Max Queue Size Exceeded */
1098 1098 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1099 1099 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1100 1100 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1101 1101 return (EINVAL);
1102 1102
1103 1103 case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1104 1104 /* Abort Command Limit Exceeded */
1105 1105 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1106 1106 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1107 1107 "abort command limit exceeded in cmd %p", (void *)cmd);
1108 1108 return (0);
1109 1109
1110 1110 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1111 1111 /* Async Event Request Limit Exceeded */
1112 1112 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1113 1113 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1114 1114 "async event request limit exceeded in cmd %p",
1115 1115 (void *)cmd);
1116 1116 return (0);
1117 1117
1118 1118 case NVME_CQE_SC_SPC_INV_INT_VECT:
1119 1119 /* Invalid Interrupt Vector */
1120 1120 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1121 1121 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1122 1122 return (EINVAL);
1123 1123
1124 1124 case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1125 1125 /* Invalid Log Page */
1126 1126 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1127 1127 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1128 1128 return (EINVAL);
1129 1129
1130 1130 case NVME_CQE_SC_SPC_INV_FORMAT:
1131 1131 /* Invalid Format */
1132 1132 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1133 1133 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1134 1134 if (cmd->nc_xfer != NULL)
1135 1135 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1136 1136 return (EINVAL);
1137 1137
1138 1138 case NVME_CQE_SC_SPC_INV_Q_DEL:
1139 1139 /* Invalid Queue Deletion */
1140 1140 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1141 1141 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1142 1142 return (EINVAL);
1143 1143
1144 1144 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1145 1145 /* Conflicting Attributes */
1146 1146 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1147 1147 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1148 1148 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1149 1149 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1150 1150 if (cmd->nc_xfer != NULL)
1151 1151 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1152 1152 return (EINVAL);
1153 1153
1154 1154 case NVME_CQE_SC_SPC_NVM_INV_PROT:
1155 1155 /* Invalid Protection Information */
1156 1156 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1157 1157 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1158 1158 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1159 1159 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1160 1160 if (cmd->nc_xfer != NULL)
1161 1161 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1162 1162 return (EINVAL);
1163 1163
1164 1164 case NVME_CQE_SC_SPC_NVM_READONLY:
1165 1165 /* Write to Read Only Range */
1166 1166 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1167 1167 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1168 1168 if (cmd->nc_xfer != NULL)
1169 1169 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1170 1170 return (EROFS);
1171 1171
1172 1172 default:
1173 1173 return (nvme_check_unknown_cmd_status(cmd));
1174 1174 }
1175 1175 }
1176 1176
1177 1177 static inline int
1178 1178 nvme_check_cmd_status(nvme_cmd_t *cmd)
1179 1179 {
1180 1180 nvme_cqe_t *cqe = &cmd->nc_cqe;
1181 1181
1182 1182 /* take a shortcut if everything is alright */
1183 1183 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1184 1184 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1185 1185 return (0);
1186 1186
1187 1187 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1188 1188 return (nvme_check_generic_cmd_status(cmd));
1189 1189 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1190 1190 return (nvme_check_specific_cmd_status(cmd));
1191 1191 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1192 1192 return (nvme_check_integrity_cmd_status(cmd));
1193 1193 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1194 1194 return (nvme_check_vendor_cmd_status(cmd));
1195 1195
1196 1196 return (nvme_check_unknown_cmd_status(cmd));
1197 1197 }
1198 1198
1199 1199 /*
1200 1200 * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1201 1201 *
1202 1202 * This functions takes care of cleaning up aborted commands. The command
1203 1203 * status is checked to catch any fatal errors.
1204 1204 */
1205 1205 static void
1206 1206 nvme_abort_cmd_cb(void *arg)
1207 1207 {
1208 1208 nvme_cmd_t *cmd = arg;
1209 1209
1210 1210 /*
1211 1211 * Grab the command mutex. Once we have it we hold the last reference
1212 1212 * to the command and can safely free it.
1213 1213 */
1214 1214 mutex_enter(&cmd->nc_mutex);
1215 1215 (void) nvme_check_cmd_status(cmd);
1216 1216 mutex_exit(&cmd->nc_mutex);
1217 1217
1218 1218 nvme_free_cmd(cmd);
1219 1219 }
1220 1220
1221 1221 static void
1222 1222 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1223 1223 {
1224 1224 nvme_t *nvme = abort_cmd->nc_nvme;
1225 1225 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1226 1226 nvme_abort_cmd_t ac = { 0 };
1227 1227
1228 1228 sema_p(&nvme->n_abort_sema);
1229 1229
1230 1230 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1231 1231 ac.b.ac_sqid = abort_cmd->nc_sqid;
1232 1232
1233 1233 /*
1234 1234 * Drop the mutex of the aborted command. From this point on
1235 1235 * we must assume that the abort callback has freed the command.
1236 1236 */
1237 1237 mutex_exit(&abort_cmd->nc_mutex);
1238 1238
1239 1239 cmd->nc_sqid = 0;
1240 1240 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1241 1241 cmd->nc_callback = nvme_wakeup_cmd;
1242 1242 cmd->nc_sqe.sqe_cdw10 = ac.r;
1243 1243
1244 1244 /*
1245 1245 * Send the ABORT to the hardware. The ABORT command will return _after_
1246 1246 * the aborted command has completed (aborted or otherwise).
1247 1247 */
1248 1248 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1249 1249 sema_v(&nvme->n_abort_sema);
1250 1250 dev_err(nvme->n_dip, CE_WARN,
1251 1251 "!nvme_admin_cmd failed for ABORT");
1252 1252 atomic_inc_32(&nvme->n_abort_failed);
1253 1253 return;
1254 1254 }
1255 1255 sema_v(&nvme->n_abort_sema);
1256 1256
1257 1257 if (nvme_check_cmd_status(cmd)) {
1258 1258 dev_err(nvme->n_dip, CE_WARN,
1259 1259 "!ABORT failed with sct = %x, sc = %x",
1260 1260 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1261 1261 atomic_inc_32(&nvme->n_abort_failed);
1262 1262 } else {
1263 1263 atomic_inc_32(&nvme->n_cmd_aborted);
1264 1264 }
1265 1265
1266 1266 nvme_free_cmd(cmd);
1267 1267 }
1268 1268
1269 1269 /*
1270 1270 * nvme_wait_cmd -- wait for command completion or timeout
1271 1271 *
1272 1272 * Returns B_TRUE if the command completed normally.
1273 1273 *
1274 1274 * Returns B_FALSE if the command timed out and an abort was attempted. The
1275 1275 * command mutex will be dropped and the command must be considered freed. The
1276 1276 * freeing of the command is normally done by the abort command callback.
1277 1277 *
1278 1278 * In case of a serious error or a timeout of the abort command the hardware
1279 1279 * will be declared dead and FMA will be notified.
1280 1280 */
1281 1281 static boolean_t
1282 1282 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1283 1283 {
1284 1284 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1285 1285 nvme_t *nvme = cmd->nc_nvme;
1286 1286 nvme_reg_csts_t csts;
1287 1287
1288 1288 ASSERT(mutex_owned(&cmd->nc_mutex));
1289 1289
1290 1290 while (!cmd->nc_completed) {
1291 1291 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1292 1292 break;
1293 1293 }
1294 1294
1295 1295 if (cmd->nc_completed)
1296 1296 return (B_TRUE);
1297 1297
1298 1298 /*
1299 1299 * The command timed out. Change the callback to the cleanup function.
1300 1300 */
1301 1301 cmd->nc_callback = nvme_abort_cmd_cb;
1302 1302
1303 1303 /*
1304 1304 * Check controller for fatal status, any errors associated with the
1305 1305 * register or DMA handle, or for a double timeout (abort command timed
1306 1306 * out). If necessary log a warning and call FMA.
1307 1307 */
1308 1308 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1309 1309 dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1310 1310 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1311 1311 atomic_inc_32(&nvme->n_cmd_timeout);
1312 1312
1313 1313 if (csts.b.csts_cfs ||
1314 1314 nvme_check_regs_hdl(nvme) ||
1315 1315 nvme_check_dma_hdl(cmd->nc_dma) ||
1316 1316 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1317 1317 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1318 1318 nvme->n_dead = B_TRUE;
1319 1319 mutex_exit(&cmd->nc_mutex);
1320 1320 } else {
1321 1321 /*
1322 1322 * Try to abort the command. The command mutex is released by
1323 1323 * nvme_abort_cmd().
1324 1324 * If the abort succeeds it will have freed the aborted command.
1325 1325 * If the abort fails for other reasons we must assume that the
1326 1326 * command may complete at any time, and the callback will free
1327 1327 * it for us.
1328 1328 */
1329 1329 nvme_abort_cmd(cmd);
1330 1330 }
1331 1331
1332 1332 return (B_FALSE);
1333 1333 }
1334 1334
1335 1335 static void
1336 1336 nvme_wakeup_cmd(void *arg)
1337 1337 {
1338 1338 nvme_cmd_t *cmd = arg;
1339 1339
1340 1340 mutex_enter(&cmd->nc_mutex);
1341 1341 /*
1342 1342 * There is a slight chance that this command completed shortly after
1343 1343 * the timeout was hit in nvme_wait_cmd() but before the callback was
1344 1344 * changed. Catch that case here and clean up accordingly.
1345 1345 */
1346 1346 if (cmd->nc_callback == nvme_abort_cmd_cb) {
1347 1347 mutex_exit(&cmd->nc_mutex);
1348 1348 nvme_abort_cmd_cb(cmd);
1349 1349 return;
1350 1350 }
1351 1351
1352 1352 cmd->nc_completed = B_TRUE;
1353 1353 cv_signal(&cmd->nc_cv);
1354 1354 mutex_exit(&cmd->nc_mutex);
1355 1355 }
1356 1356
1357 1357 static void
1358 1358 nvme_async_event_task(void *arg)
1359 1359 {
1360 1360 nvme_cmd_t *cmd = arg;
1361 1361 nvme_t *nvme = cmd->nc_nvme;
1362 1362 nvme_error_log_entry_t *error_log = NULL;
1363 1363 nvme_health_log_t *health_log = NULL;
1364 1364 size_t logsize = 0;
1365 1365 nvme_async_event_t event;
1366 1366 int ret;
1367 1367
1368 1368 /*
1369 1369 * Check for errors associated with the async request itself. The only
1370 1370 * command-specific error is "async event limit exceeded", which
1371 1371 * indicates a programming error in the driver and causes a panic in
1372 1372 * nvme_check_cmd_status().
1373 1373 *
1374 1374 * Other possible errors are various scenarios where the async request
1375 1375 * was aborted, or internal errors in the device. Internal errors are
1376 1376 * reported to FMA, the command aborts need no special handling here.
1377 1377 */
1378 1378 if (nvme_check_cmd_status(cmd)) {
1379 1379 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1380 1380 "!async event request returned failure, sct = %x, "
1381 1381 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1382 1382 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1383 1383 cmd->nc_cqe.cqe_sf.sf_m);
1384 1384
1385 1385 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1386 1386 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1387 1387 cmd->nc_nvme->n_dead = B_TRUE;
1388 1388 ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1389 1389 DDI_SERVICE_LOST);
1390 1390 }
1391 1391 nvme_free_cmd(cmd);
1392 1392 return;
1393 1393 }
1394 1394
1395 1395
1396 1396 event.r = cmd->nc_cqe.cqe_dw0;
1397 1397
1398 1398 /* Clear CQE and re-submit the async request. */
1399 1399 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1400 1400 ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1401 1401
1402 1402 if (ret != DDI_SUCCESS) {
1403 1403 dev_err(nvme->n_dip, CE_WARN,
1404 1404 "!failed to resubmit async event request");
1405 1405 atomic_inc_32(&nvme->n_async_resubmit_failed);
1406 1406 nvme_free_cmd(cmd);
1407 1407 }
1408 1408
1409 1409 switch (event.b.ae_type) {
1410 1410 case NVME_ASYNC_TYPE_ERROR:
1411 1411 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1412 1412 (void) nvme_get_logpage(nvme, (void **)&error_log,
1413 1413 &logsize, event.b.ae_logpage);
1414 1414 } else {
1415 1415 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1416 1416 "async event reply: %d", event.b.ae_logpage);
1417 1417 atomic_inc_32(&nvme->n_wrong_logpage);
1418 1418 }
1419 1419
1420 1420 switch (event.b.ae_info) {
1421 1421 case NVME_ASYNC_ERROR_INV_SQ:
1422 1422 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1423 1423 "invalid submission queue");
1424 1424 return;
1425 1425
1426 1426 case NVME_ASYNC_ERROR_INV_DBL:
1427 1427 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1428 1428 "invalid doorbell write value");
1429 1429 return;
1430 1430
1431 1431 case NVME_ASYNC_ERROR_DIAGFAIL:
1432 1432 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1433 1433 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1434 1434 nvme->n_dead = B_TRUE;
1435 1435 atomic_inc_32(&nvme->n_diagfail_event);
1436 1436 break;
1437 1437
1438 1438 case NVME_ASYNC_ERROR_PERSISTENT:
1439 1439 dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1440 1440 "device error");
1441 1441 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1442 1442 nvme->n_dead = B_TRUE;
1443 1443 atomic_inc_32(&nvme->n_persistent_event);
1444 1444 break;
1445 1445
1446 1446 case NVME_ASYNC_ERROR_TRANSIENT:
1447 1447 dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1448 1448 "device error");
1449 1449 /* TODO: send ereport */
1450 1450 atomic_inc_32(&nvme->n_transient_event);
1451 1451 break;
1452 1452
1453 1453 case NVME_ASYNC_ERROR_FW_LOAD:
1454 1454 dev_err(nvme->n_dip, CE_WARN,
1455 1455 "!firmware image load error");
1456 1456 atomic_inc_32(&nvme->n_fw_load_event);
1457 1457 break;
1458 1458 }
1459 1459 break;
1460 1460
1461 1461 case NVME_ASYNC_TYPE_HEALTH:
1462 1462 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1463 1463 (void) nvme_get_logpage(nvme, (void **)&health_log,
1464 1464 &logsize, event.b.ae_logpage, -1);
1465 1465 } else {
1466 1466 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1467 1467 "async event reply: %d", event.b.ae_logpage);
1468 1468 atomic_inc_32(&nvme->n_wrong_logpage);
1469 1469 }
1470 1470
1471 1471 switch (event.b.ae_info) {
1472 1472 case NVME_ASYNC_HEALTH_RELIABILITY:
1473 1473 dev_err(nvme->n_dip, CE_WARN,
1474 1474 "!device reliability compromised");
1475 1475 /* TODO: send ereport */
1476 1476 atomic_inc_32(&nvme->n_reliability_event);
1477 1477 break;
1478 1478
1479 1479 case NVME_ASYNC_HEALTH_TEMPERATURE:
1480 1480 dev_err(nvme->n_dip, CE_WARN,
1481 1481 "!temperature above threshold");
1482 1482 /* TODO: send ereport */
1483 1483 atomic_inc_32(&nvme->n_temperature_event);
1484 1484 break;
1485 1485
1486 1486 case NVME_ASYNC_HEALTH_SPARE:
1487 1487 dev_err(nvme->n_dip, CE_WARN,
1488 1488 "!spare space below threshold");
1489 1489 /* TODO: send ereport */
1490 1490 atomic_inc_32(&nvme->n_spare_event);
1491 1491 break;
1492 1492 }
1493 1493 break;
1494 1494
1495 1495 case NVME_ASYNC_TYPE_VENDOR:
1496 1496 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1497 1497 "received, info = %x, logpage = %x", event.b.ae_info,
1498 1498 event.b.ae_logpage);
1499 1499 atomic_inc_32(&nvme->n_vendor_event);
1500 1500 break;
1501 1501
1502 1502 default:
1503 1503 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1504 1504 "type = %x, info = %x, logpage = %x", event.b.ae_type,
1505 1505 event.b.ae_info, event.b.ae_logpage);
1506 1506 atomic_inc_32(&nvme->n_unknown_event);
1507 1507 break;
1508 1508 }
1509 1509
1510 1510 if (error_log)
1511 1511 kmem_free(error_log, logsize);
1512 1512
1513 1513 if (health_log)
1514 1514 kmem_free(health_log, logsize);
1515 1515 }
1516 1516
1517 1517 static int
1518 1518 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1519 1519 {
1520 1520 int ret;
1521 1521
1522 1522 mutex_enter(&cmd->nc_mutex);
1523 1523 ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1524 1524
1525 1525 if (ret != DDI_SUCCESS) {
1526 1526 mutex_exit(&cmd->nc_mutex);
1527 1527 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1528 1528 "!nvme_submit_cmd failed");
1529 1529 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1530 1530 nvme_free_cmd(cmd);
1531 1531 return (DDI_FAILURE);
1532 1532 }
1533 1533
1534 1534 if (nvme_wait_cmd(cmd, sec) == B_FALSE) {
1535 1535 /*
1536 1536 * The command timed out. An abort command was posted that
1537 1537 * will take care of the cleanup.
1538 1538 */
1539 1539 return (DDI_FAILURE);
1540 1540 }
1541 1541 mutex_exit(&cmd->nc_mutex);
1542 1542
1543 1543 return (DDI_SUCCESS);
1544 1544 }
1545 1545
1546 1546 static int
1547 1547 nvme_async_event(nvme_t *nvme)
1548 1548 {
1549 1549 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1550 1550 int ret;
1551 1551
1552 1552 cmd->nc_sqid = 0;
1553 1553 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1554 1554 cmd->nc_callback = nvme_async_event_task;
1555 1555
1556 1556 ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1557 1557
1558 1558 if (ret != DDI_SUCCESS) {
1559 1559 dev_err(nvme->n_dip, CE_WARN,
1560 1560 "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1561 1561 nvme_free_cmd(cmd);
1562 1562 return (DDI_FAILURE);
1563 1563 }
1564 1564
1565 1565 return (DDI_SUCCESS);
1566 1566 }
1567 1567
1568 1568 static int
1569 1569 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1570 1570 uint8_t pi, boolean_t pil, uint8_t ses)
1571 1571 {
1572 1572 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1573 1573 nvme_format_nvm_t format_nvm = { 0 };
1574 1574 int ret;
1575 1575
1576 1576 format_nvm.b.fm_lbaf = lbaf & 0xf;
1577 1577 format_nvm.b.fm_ms = ms ? 1 : 0;
1578 1578 format_nvm.b.fm_pi = pi & 0x7;
1579 1579 format_nvm.b.fm_pil = pil ? 1 : 0;
1580 1580 format_nvm.b.fm_ses = ses & 0x7;
1581 1581
1582 1582 cmd->nc_sqid = 0;
1583 1583 cmd->nc_callback = nvme_wakeup_cmd;
1584 1584 cmd->nc_sqe.sqe_nsid = nsid;
1585 1585 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1586 1586 cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1587 1587
1588 1588 /*
1589 1589 * Some devices like Samsung SM951 don't allow formatting of all
1590 1590 * namespaces in one command. Handle that gracefully.
1591 1591 */
1592 1592 if (nsid == (uint32_t)-1)
1593 1593 cmd->nc_dontpanic = B_TRUE;
1594 1594
1595 1595 if ((ret = nvme_admin_cmd(cmd, nvme_format_cmd_timeout))
1596 1596 != DDI_SUCCESS) {
1597 1597 dev_err(nvme->n_dip, CE_WARN,
1598 1598 "!nvme_admin_cmd failed for FORMAT NVM");
1599 1599 return (EIO);
1600 1600 }
1601 1601
1602 1602 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1603 1603 dev_err(nvme->n_dip, CE_WARN,
1604 1604 "!FORMAT failed with sct = %x, sc = %x",
1605 1605 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1606 1606 }
1607 1607
1608 1608 nvme_free_cmd(cmd);
1609 1609 return (ret);
1610 1610 }
1611 1611
1612 1612 static int
1613 1613 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1614 1614 ...)
1615 1615 {
1616 1616 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1617 1617 nvme_getlogpage_t getlogpage = { 0 };
1618 1618 va_list ap;
1619 1619 int ret = DDI_FAILURE;
1620 1620
1621 1621 va_start(ap, logpage);
1622 1622
1623 1623 cmd->nc_sqid = 0;
1624 1624 cmd->nc_callback = nvme_wakeup_cmd;
1625 1625 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1626 1626
1627 1627 getlogpage.b.lp_lid = logpage;
1628 1628
1629 1629 switch (logpage) {
1630 1630 case NVME_LOGPAGE_ERROR:
1631 1631 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1632 1632 /*
1633 1633 * The GET LOG PAGE command can use at most 2 pages to return
1634 1634 * data, PRP lists are not supported.
1635 1635 */
1636 1636 *bufsize = MIN(2 * nvme->n_pagesize,
1637 1637 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1638 1638 break;
1639 1639
1640 1640 case NVME_LOGPAGE_HEALTH:
1641 1641 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1642 1642 *bufsize = sizeof (nvme_health_log_t);
1643 1643 break;
1644 1644
1645 1645 case NVME_LOGPAGE_FWSLOT:
1646 1646 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1647 1647 *bufsize = sizeof (nvme_fwslot_log_t);
1648 1648 break;
1649 1649
1650 1650 default:
1651 1651 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1652 1652 logpage);
1653 1653 atomic_inc_32(&nvme->n_unknown_logpage);
1654 1654 goto fail;
1655 1655 }
1656 1656
1657 1657 va_end(ap);
1658 1658
1659 1659 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1660 1660
1661 1661 cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1662 1662
1663 1663 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1664 1664 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1665 1665 dev_err(nvme->n_dip, CE_WARN,
1666 1666 "!nvme_zalloc_dma failed for GET LOG PAGE");
1667 1667 goto fail;
1668 1668 }
1669 1669
1670 1670 if (cmd->nc_dma->nd_ncookie > 2) {
1671 1671 dev_err(nvme->n_dip, CE_WARN,
1672 1672 "!too many DMA cookies for GET LOG PAGE");
1673 1673 atomic_inc_32(&nvme->n_too_many_cookies);
1674 1674 goto fail;
1675 1675 }
1676 1676
1677 1677 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1678 1678 if (cmd->nc_dma->nd_ncookie > 1) {
1679 1679 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1680 1680 &cmd->nc_dma->nd_cookie);
1681 1681 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1682 1682 cmd->nc_dma->nd_cookie.dmac_laddress;
1683 1683 }
1684 1684
1685 1685 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1686 1686 dev_err(nvme->n_dip, CE_WARN,
1687 1687 "!nvme_admin_cmd failed for GET LOG PAGE");
1688 1688 return (ret);
1689 1689 }
1690 1690
1691 1691 if (nvme_check_cmd_status(cmd)) {
1692 1692 dev_err(nvme->n_dip, CE_WARN,
1693 1693 "!GET LOG PAGE failed with sct = %x, sc = %x",
1694 1694 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1695 1695 goto fail;
1696 1696 }
1697 1697
1698 1698 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1699 1699 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1700 1700
1701 1701 ret = DDI_SUCCESS;
1702 1702
1703 1703 fail:
1704 1704 nvme_free_cmd(cmd);
1705 1705
1706 1706 return (ret);
1707 1707 }
1708 1708
1709 1709 static void *
1710 1710 nvme_identify(nvme_t *nvme, uint32_t nsid)
1711 1711 {
1712 1712 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1713 1713 void *buf = NULL;
1714 1714
1715 1715 cmd->nc_sqid = 0;
1716 1716 cmd->nc_callback = nvme_wakeup_cmd;
1717 1717 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1718 1718 cmd->nc_sqe.sqe_nsid = nsid;
1719 1719 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1720 1720
1721 1721 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1722 1722 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1723 1723 dev_err(nvme->n_dip, CE_WARN,
1724 1724 "!nvme_zalloc_dma failed for IDENTIFY");
1725 1725 goto fail;
1726 1726 }
1727 1727
1728 1728 if (cmd->nc_dma->nd_ncookie > 2) {
1729 1729 dev_err(nvme->n_dip, CE_WARN,
1730 1730 "!too many DMA cookies for IDENTIFY");
1731 1731 atomic_inc_32(&nvme->n_too_many_cookies);
1732 1732 goto fail;
1733 1733 }
1734 1734
1735 1735 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1736 1736 if (cmd->nc_dma->nd_ncookie > 1) {
1737 1737 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1738 1738 &cmd->nc_dma->nd_cookie);
1739 1739 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1740 1740 cmd->nc_dma->nd_cookie.dmac_laddress;
1741 1741 }
1742 1742
1743 1743 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1744 1744 dev_err(nvme->n_dip, CE_WARN,
1745 1745 "!nvme_admin_cmd failed for IDENTIFY");
1746 1746 return (NULL);
1747 1747 }
1748 1748
1749 1749 if (nvme_check_cmd_status(cmd)) {
1750 1750 dev_err(nvme->n_dip, CE_WARN,
1751 1751 "!IDENTIFY failed with sct = %x, sc = %x",
1752 1752 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1753 1753 goto fail;
1754 1754 }
1755 1755
1756 1756 buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1757 1757 bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1758 1758
1759 1759 fail:
1760 1760 nvme_free_cmd(cmd);
1761 1761
1762 1762 return (buf);
1763 1763 }
1764 1764
1765 1765 static boolean_t
1766 1766 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1767 1767 uint32_t *res)
1768 1768 {
1769 1769 _NOTE(ARGUNUSED(nsid));
1770 1770 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1771 1771 boolean_t ret = B_FALSE;
1772 1772
1773 1773 ASSERT(res != NULL);
1774 1774
1775 1775 cmd->nc_sqid = 0;
1776 1776 cmd->nc_callback = nvme_wakeup_cmd;
1777 1777 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1778 1778 cmd->nc_sqe.sqe_cdw10 = feature;
1779 1779 cmd->nc_sqe.sqe_cdw11 = val;
1780 1780
1781 1781 switch (feature) {
1782 1782 case NVME_FEAT_WRITE_CACHE:
1783 1783 if (!nvme->n_write_cache_present)
1784 1784 goto fail;
1785 1785 break;
1786 1786
1787 1787 case NVME_FEAT_NQUEUES:
1788 1788 break;
1789 1789
1790 1790 default:
1791 1791 goto fail;
1792 1792 }
1793 1793
1794 1794 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1795 1795 dev_err(nvme->n_dip, CE_WARN,
1796 1796 "!nvme_admin_cmd failed for SET FEATURES");
1797 1797 return (ret);
1798 1798 }
1799 1799
1800 1800 if (nvme_check_cmd_status(cmd)) {
1801 1801 dev_err(nvme->n_dip, CE_WARN,
1802 1802 "!SET FEATURES %d failed with sct = %x, sc = %x",
1803 1803 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1804 1804 cmd->nc_cqe.cqe_sf.sf_sc);
1805 1805 goto fail;
1806 1806 }
1807 1807
1808 1808 *res = cmd->nc_cqe.cqe_dw0;
1809 1809 ret = B_TRUE;
1810 1810
1811 1811 fail:
1812 1812 nvme_free_cmd(cmd);
1813 1813 return (ret);
1814 1814 }
1815 1815
1816 1816 static boolean_t
1817 1817 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1818 1818 void **buf, size_t *bufsize)
1819 1819 {
1820 1820 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1821 1821 boolean_t ret = B_FALSE;
1822 1822
1823 1823 ASSERT(res != NULL);
1824 1824
1825 1825 if (bufsize != NULL)
1826 1826 *bufsize = 0;
1827 1827
1828 1828 cmd->nc_sqid = 0;
1829 1829 cmd->nc_callback = nvme_wakeup_cmd;
1830 1830 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1831 1831 cmd->nc_sqe.sqe_cdw10 = feature;
1832 1832 cmd->nc_sqe.sqe_cdw11 = *res;
1833 1833
1834 1834 switch (feature) {
1835 1835 case NVME_FEAT_ARBITRATION:
1836 1836 case NVME_FEAT_POWER_MGMT:
1837 1837 case NVME_FEAT_TEMPERATURE:
1838 1838 case NVME_FEAT_ERROR:
1839 1839 case NVME_FEAT_NQUEUES:
1840 1840 case NVME_FEAT_INTR_COAL:
1841 1841 case NVME_FEAT_INTR_VECT:
1842 1842 case NVME_FEAT_WRITE_ATOM:
1843 1843 case NVME_FEAT_ASYNC_EVENT:
1844 1844 case NVME_FEAT_PROGRESS:
1845 1845 break;
1846 1846
1847 1847 case NVME_FEAT_WRITE_CACHE:
1848 1848 if (!nvme->n_write_cache_present)
1849 1849 goto fail;
1850 1850 break;
1851 1851
1852 1852 case NVME_FEAT_LBA_RANGE:
1853 1853 if (!nvme->n_lba_range_supported)
1854 1854 goto fail;
1855 1855
1856 1856 /*
1857 1857 * The LBA Range Type feature is optional. There doesn't seem
1858 1858 * be a method of detecting whether it is supported other than
1859 1859 * using it. This will cause a "invalid field in command" error,
1860 1860 * which is normally considered a programming error and causes
1861 1861 * panic in nvme_check_generic_cmd_status().
1862 1862 */
1863 1863 cmd->nc_dontpanic = B_TRUE;
1864 1864 cmd->nc_sqe.sqe_nsid = nsid;
1865 1865 ASSERT(bufsize != NULL);
1866 1866 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1867 1867
1868 1868 break;
1869 1869
1870 1870 case NVME_FEAT_AUTO_PST:
1871 1871 if (!nvme->n_auto_pst_supported)
1872 1872 goto fail;
1873 1873
1874 1874 ASSERT(bufsize != NULL);
1875 1875 *bufsize = NVME_AUTO_PST_BUFSIZE;
1876 1876 break;
1877 1877
1878 1878 default:
1879 1879 goto fail;
1880 1880 }
1881 1881
1882 1882 if (bufsize != NULL && *bufsize != 0) {
1883 1883 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1884 1884 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1885 1885 dev_err(nvme->n_dip, CE_WARN,
1886 1886 "!nvme_zalloc_dma failed for GET FEATURES");
1887 1887 goto fail;
1888 1888 }
1889 1889
1890 1890 if (cmd->nc_dma->nd_ncookie > 2) {
1891 1891 dev_err(nvme->n_dip, CE_WARN,
1892 1892 "!too many DMA cookies for GET FEATURES");
1893 1893 atomic_inc_32(&nvme->n_too_many_cookies);
1894 1894 goto fail;
1895 1895 }
1896 1896
1897 1897 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1898 1898 cmd->nc_dma->nd_cookie.dmac_laddress;
1899 1899 if (cmd->nc_dma->nd_ncookie > 1) {
1900 1900 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1901 1901 &cmd->nc_dma->nd_cookie);
1902 1902 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1903 1903 cmd->nc_dma->nd_cookie.dmac_laddress;
1904 1904 }
1905 1905 }
1906 1906
1907 1907 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1908 1908 dev_err(nvme->n_dip, CE_WARN,
1909 1909 "!nvme_admin_cmd failed for GET FEATURES");
1910 1910 return (ret);
1911 1911 }
1912 1912
1913 1913 if (nvme_check_cmd_status(cmd)) {
1914 1914 if (feature == NVME_FEAT_LBA_RANGE &&
1915 1915 cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1916 1916 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1917 1917 nvme->n_lba_range_supported = B_FALSE;
1918 1918 else
1919 1919 dev_err(nvme->n_dip, CE_WARN,
1920 1920 "!GET FEATURES %d failed with sct = %x, sc = %x",
1921 1921 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1922 1922 cmd->nc_cqe.cqe_sf.sf_sc);
1923 1923 goto fail;
1924 1924 }
1925 1925
1926 1926 if (bufsize != NULL && *bufsize != 0) {
1927 1927 ASSERT(buf != NULL);
1928 1928 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1929 1929 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1930 1930 }
1931 1931
1932 1932 *res = cmd->nc_cqe.cqe_dw0;
1933 1933 ret = B_TRUE;
1934 1934
1935 1935 fail:
1936 1936 nvme_free_cmd(cmd);
1937 1937 return (ret);
1938 1938 }
1939 1939
1940 1940 static boolean_t
1941 1941 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1942 1942 {
1943 1943 nvme_write_cache_t nwc = { 0 };
1944 1944
1945 1945 if (enable)
1946 1946 nwc.b.wc_wce = 1;
1947 1947
1948 1948 if (!nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, &nwc.r))
1949 1949 return (B_FALSE);
1950 1950
1951 1951 return (B_TRUE);
1952 1952 }
1953 1953
1954 1954 static int
1955 1955 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1956 1956 {
1957 1957 nvme_nqueues_t nq = { 0 };
1958 1958
1959 1959 nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1960 1960
1961 1961 if (!nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r)) {
1962 1962 return (0);
1963 1963 }
1964 1964
1965 1965 /*
1966 1966 * Always use the same number of submission and completion queues, and
1967 1967 * never use more than the requested number of queues.
1968 1968 */
1969 1969 return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1970 1970 }
1971 1971
1972 1972 static int
1973 1973 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1974 1974 {
1975 1975 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1976 1976 nvme_create_queue_dw10_t dw10 = { 0 };
1977 1977 nvme_create_cq_dw11_t c_dw11 = { 0 };
1978 1978 nvme_create_sq_dw11_t s_dw11 = { 0 };
1979 1979
1980 1980 dw10.b.q_qid = idx;
1981 1981 dw10.b.q_qsize = qp->nq_nentry - 1;
1982 1982
1983 1983 c_dw11.b.cq_pc = 1;
1984 1984 c_dw11.b.cq_ien = 1;
1985 1985 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1986 1986
1987 1987 cmd->nc_sqid = 0;
1988 1988 cmd->nc_callback = nvme_wakeup_cmd;
1989 1989 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1990 1990 cmd->nc_sqe.sqe_cdw10 = dw10.r;
1991 1991 cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1992 1992 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1993 1993
1994 1994 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1995 1995 dev_err(nvme->n_dip, CE_WARN,
1996 1996 "!nvme_admin_cmd failed for CREATE CQUEUE");
1997 1997 return (DDI_FAILURE);
1998 1998 }
1999 1999
2000 2000 if (nvme_check_cmd_status(cmd)) {
2001 2001 dev_err(nvme->n_dip, CE_WARN,
2002 2002 "!CREATE CQUEUE failed with sct = %x, sc = %x",
2003 2003 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2004 2004 nvme_free_cmd(cmd);
2005 2005 return (DDI_FAILURE);
2006 2006 }
2007 2007
2008 2008 nvme_free_cmd(cmd);
2009 2009
2010 2010 s_dw11.b.sq_pc = 1;
2011 2011 s_dw11.b.sq_cqid = idx;
2012 2012
2013 2013 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2014 2014 cmd->nc_sqid = 0;
2015 2015 cmd->nc_callback = nvme_wakeup_cmd;
2016 2016 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2017 2017 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2018 2018 cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2019 2019 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2020 2020
2021 2021 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
2022 2022 dev_err(nvme->n_dip, CE_WARN,
2023 2023 "!nvme_admin_cmd failed for CREATE SQUEUE");
2024 2024 return (DDI_FAILURE);
2025 2025 }
2026 2026
2027 2027 if (nvme_check_cmd_status(cmd)) {
2028 2028 dev_err(nvme->n_dip, CE_WARN,
2029 2029 "!CREATE SQUEUE failed with sct = %x, sc = %x",
2030 2030 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2031 2031 nvme_free_cmd(cmd);
2032 2032 return (DDI_FAILURE);
2033 2033 }
2034 2034
2035 2035 nvme_free_cmd(cmd);
2036 2036
2037 2037 return (DDI_SUCCESS);
2038 2038 }
2039 2039
2040 2040 static boolean_t
2041 2041 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2042 2042 {
2043 2043 nvme_reg_csts_t csts;
2044 2044 int i;
2045 2045
2046 2046 nvme_put32(nvme, NVME_REG_CC, 0);
2047 2047
2048 2048 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2049 2049 if (csts.b.csts_rdy == 1) {
2050 2050 nvme_put32(nvme, NVME_REG_CC, 0);
2051 2051 for (i = 0; i != nvme->n_timeout * 10; i++) {
2052 2052 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2053 2053 if (csts.b.csts_rdy == 0)
2054 2054 break;
2055 2055
2056 2056 if (quiesce)
2057 2057 drv_usecwait(50000);
2058 2058 else
2059 2059 delay(drv_usectohz(50000));
2060 2060 }
2061 2061 }
2062 2062
2063 2063 nvme_put32(nvme, NVME_REG_AQA, 0);
2064 2064 nvme_put32(nvme, NVME_REG_ASQ, 0);
2065 2065 nvme_put32(nvme, NVME_REG_ACQ, 0);
2066 2066
2067 2067 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2068 2068 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2069 2069 }
2070 2070
2071 2071 static void
2072 2072 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2073 2073 {
2074 2074 nvme_reg_cc_t cc;
2075 2075 nvme_reg_csts_t csts;
2076 2076 int i;
2077 2077
2078 2078 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2079 2079
2080 2080 cc.r = nvme_get32(nvme, NVME_REG_CC);
2081 2081 cc.b.cc_shn = mode & 0x3;
2082 2082 nvme_put32(nvme, NVME_REG_CC, cc.r);
2083 2083
2084 2084 for (i = 0; i != 10; i++) {
2085 2085 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2086 2086 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2087 2087 break;
2088 2088
2089 2089 if (quiesce)
2090 2090 drv_usecwait(100000);
2091 2091 else
2092 2092 delay(drv_usectohz(100000));
2093 2093 }
2094 2094 }
2095 2095
2096 2096
2097 2097 static void
2098 2098 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2099 2099 {
2100 2100 /*
2101 2101 * Section 7.7 of the spec describes how to get a unique ID for
2102 2102 * the controller: the vendor ID, the model name and the serial
2103 2103 * number shall be unique when combined.
2104 2104 *
2105 2105 * If a namespace has no EUI64 we use the above and add the hex
2106 2106 * namespace ID to get a unique ID for the namespace.
2107 2107 */
2108 2108 char model[sizeof (nvme->n_idctl->id_model) + 1];
2109 2109 char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2110 2110
2111 2111 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2112 2112 bcopy(nvme->n_idctl->id_serial, serial,
2113 2113 sizeof (nvme->n_idctl->id_serial));
2114 2114
2115 2115 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2116 2116 serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2117 2117
2118 2118 nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2119 2119 nvme->n_idctl->id_vid, model, serial, nsid);
2120 2120 }
2121 2121
2122 2122 static int
2123 2123 nvme_init_ns(nvme_t *nvme, int nsid)
2124 2124 {
2125 2125 nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2126 2126 nvme_identify_nsid_t *idns;
2127 2127 int last_rp;
2128 2128
2129 2129 ns->ns_nvme = nvme;
2130 2130 idns = nvme_identify(nvme, nsid);
2131 2131
2132 2132 if (idns == NULL) {
2133 2133 dev_err(nvme->n_dip, CE_WARN,
2134 2134 "!failed to identify namespace %d", nsid);
2135 2135 return (DDI_FAILURE);
2136 2136 }
2137 2137
2138 2138 ns->ns_idns = idns;
2139 2139 ns->ns_id = nsid;
2140 2140 ns->ns_block_count = idns->id_nsize;
2141 2141 ns->ns_block_size =
2142 2142 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2143 2143 ns->ns_best_block_size = ns->ns_block_size;
2144 2144
2145 2145 /*
2146 2146 * Get the EUI64 if present. Use it for devid and device node names.
2147 2147 */
2148 2148 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2149 2149 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2150 2150
2151 2151 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2152 2152 if (*(uint64_t *)ns->ns_eui64 != 0) {
2153 2153 uint8_t *eui64 = ns->ns_eui64;
2154 2154
2155 2155 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2156 2156 "%02x%02x%02x%02x%02x%02x%02x%02x",
2157 2157 eui64[0], eui64[1], eui64[2], eui64[3],
2158 2158 eui64[4], eui64[5], eui64[6], eui64[7]);
2159 2159 } else {
2160 2160 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2161 2161 ns->ns_id);
2162 2162
2163 2163 nvme_prepare_devid(nvme, ns->ns_id);
2164 2164 }
2165 2165
2166 2166 /*
2167 2167 * Find the LBA format with no metadata and the best relative
2168 2168 * performance. A value of 3 means "degraded", 0 is best.
2169 2169 */
2170 2170 last_rp = 3;
2171 2171 for (int j = 0; j <= idns->id_nlbaf; j++) {
2172 2172 if (idns->id_lbaf[j].lbaf_lbads == 0)
2173 2173 break;
2174 2174 if (idns->id_lbaf[j].lbaf_ms != 0)
2175 2175 continue;
2176 2176 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2177 2177 continue;
2178 2178 last_rp = idns->id_lbaf[j].lbaf_rp;
2179 2179 ns->ns_best_block_size =
2180 2180 1 << idns->id_lbaf[j].lbaf_lbads;
2181 2181 }
2182 2182
2183 2183 if (ns->ns_best_block_size < nvme->n_min_block_size)
2184 2184 ns->ns_best_block_size = nvme->n_min_block_size;
2185 2185
2186 2186 /*
2187 2187 * We currently don't support namespaces that use either:
2188 2188 * - thin provisioning
2189 2189 * - protection information
2190 2190 * - illegal block size (< 512)
2191 2191 */
2192 2192 if (idns->id_nsfeat.f_thin ||
2193 2193 idns->id_dps.dp_pinfo) {
2194 2194 dev_err(nvme->n_dip, CE_WARN,
2195 2195 "!ignoring namespace %d, unsupported features: "
2196 2196 "thin = %d, pinfo = %d", nsid,
2197 2197 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2198 2198 ns->ns_ignore = B_TRUE;
2199 2199 } else if (ns->ns_block_size < 512) {
2200 2200 dev_err(nvme->n_dip, CE_WARN,
2201 2201 "!ignoring namespace %d, unsupported block size %"PRIu64,
2202 2202 nsid, (uint64_t)ns->ns_block_size);
2203 2203 ns->ns_ignore = B_TRUE;
2204 2204 } else {
2205 2205 ns->ns_ignore = B_FALSE;
2206 2206 }
2207 2207
2208 2208 return (DDI_SUCCESS);
2209 2209 }
2210 2210
2211 2211 static int
2212 2212 nvme_init(nvme_t *nvme)
2213 2213 {
2214 2214 nvme_reg_cc_t cc = { 0 };
2215 2215 nvme_reg_aqa_t aqa = { 0 };
2216 2216 nvme_reg_asq_t asq = { 0 };
2217 2217 nvme_reg_acq_t acq = { 0 };
2218 2218 nvme_reg_cap_t cap;
2219 2219 nvme_reg_vs_t vs;
2220 2220 nvme_reg_csts_t csts;
2221 2221 int i = 0;
2222 2222 int nqueues;
2223 2223 char model[sizeof (nvme->n_idctl->id_model) + 1];
2224 2224 char *vendor, *product;
2225 2225
2226 2226 /* Check controller version */
2227 2227 vs.r = nvme_get32(nvme, NVME_REG_VS);
2228 2228 nvme->n_version.v_major = vs.b.vs_mjr;
2229 2229 nvme->n_version.v_minor = vs.b.vs_mnr;
2230 2230 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2231 2231 nvme->n_version.v_major, nvme->n_version.v_minor);
2232 2232
2233 2233 if (NVME_VERSION_HIGHER(&nvme->n_version,
2234 2234 nvme_version_major, nvme_version_minor)) {
2235 2235 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2236 2236 nvme_version_major, nvme_version_minor);
2237 2237 if (nvme->n_strict_version)
2238 2238 goto fail;
2239 2239 }
2240 2240
2241 2241 /* retrieve controller configuration */
2242 2242 cap.r = nvme_get64(nvme, NVME_REG_CAP);
2243 2243
2244 2244 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2245 2245 dev_err(nvme->n_dip, CE_WARN,
2246 2246 "!NVM command set not supported by hardware");
2247 2247 goto fail;
2248 2248 }
2249 2249
2250 2250 nvme->n_nssr_supported = cap.b.cap_nssrs;
2251 2251 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2252 2252 nvme->n_timeout = cap.b.cap_to;
2253 2253 nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2254 2254 nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2255 2255 nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2256 2256
2257 2257 /*
2258 2258 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2259 2259 * the base page size of 4k (1<<12), so add 12 here to get the real
2260 2260 * page size value.
2261 2261 */
2262 2262 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2263 2263 cap.b.cap_mpsmax + 12);
2264 2264 nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2265 2265
2266 2266 /*
2267 2267 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2268 2268 */
2269 2269 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2270 2270 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2271 2271
2272 2272 /*
2273 2273 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2274 2274 * Maxxfer may be increased after we identified the controller limits.
2275 2275 */
2276 2276 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2277 2277 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2278 2278 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2279 2279 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2280 2280
2281 2281 /*
2282 2282 * Reset controller if it's still in ready state.
2283 2283 */
2284 2284 if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2285 2285 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2286 2286 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2287 2287 nvme->n_dead = B_TRUE;
2288 2288 goto fail;
2289 2289 }
2290 2290
2291 2291 /*
2292 2292 * Create the admin queue pair.
2293 2293 */
2294 2294 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2295 2295 != DDI_SUCCESS) {
2296 2296 dev_err(nvme->n_dip, CE_WARN,
2297 2297 "!unable to allocate admin qpair");
2298 2298 goto fail;
2299 2299 }
2300 2300 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2301 2301 nvme->n_ioq[0] = nvme->n_adminq;
2302 2302
2303 2303 nvme->n_progress |= NVME_ADMIN_QUEUE;
2304 2304
2305 2305 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2306 2306 "admin-queue-len", nvme->n_admin_queue_len);
2307 2307
2308 2308 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2309 2309 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2310 2310 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2311 2311
2312 2312 ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2313 2313 ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2314 2314
2315 2315 nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2316 2316 nvme_put64(nvme, NVME_REG_ASQ, asq);
2317 2317 nvme_put64(nvme, NVME_REG_ACQ, acq);
2318 2318
2319 2319 cc.b.cc_ams = 0; /* use Round-Robin arbitration */
2320 2320 cc.b.cc_css = 0; /* use NVM command set */
2321 2321 cc.b.cc_mps = nvme->n_pageshift - 12;
2322 2322 cc.b.cc_shn = 0; /* no shutdown in progress */
2323 2323 cc.b.cc_en = 1; /* enable controller */
2324 2324 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */
2325 2325 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */
2326 2326
2327 2327 nvme_put32(nvme, NVME_REG_CC, cc.r);
2328 2328
2329 2329 /*
2330 2330 * Wait for the controller to become ready.
2331 2331 */
2332 2332 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2333 2333 if (csts.b.csts_rdy == 0) {
2334 2334 for (i = 0; i != nvme->n_timeout * 10; i++) {
2335 2335 delay(drv_usectohz(50000));
2336 2336 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2337 2337
2338 2338 if (csts.b.csts_cfs == 1) {
2339 2339 dev_err(nvme->n_dip, CE_WARN,
2340 2340 "!controller fatal status at init");
2341 2341 ddi_fm_service_impact(nvme->n_dip,
2342 2342 DDI_SERVICE_LOST);
2343 2343 nvme->n_dead = B_TRUE;
2344 2344 goto fail;
2345 2345 }
2346 2346
2347 2347 if (csts.b.csts_rdy == 1)
2348 2348 break;
2349 2349 }
2350 2350 }
2351 2351
2352 2352 if (csts.b.csts_rdy == 0) {
2353 2353 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2354 2354 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2355 2355 nvme->n_dead = B_TRUE;
2356 2356 goto fail;
2357 2357 }
2358 2358
2359 2359 /*
2360 2360 * Assume an abort command limit of 1. We'll destroy and re-init
2361 2361 * that later when we know the true abort command limit.
2362 2362 */
2363 2363 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2364 2364
2365 2365 /*
2366 2366 * Setup initial interrupt for admin queue.
2367 2367 */
2368 2368 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2369 2369 != DDI_SUCCESS) &&
2370 2370 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2371 2371 != DDI_SUCCESS) &&
2372 2372 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2373 2373 != DDI_SUCCESS)) {
2374 2374 dev_err(nvme->n_dip, CE_WARN,
2375 2375 "!failed to setup initial interrupt");
2376 2376 goto fail;
2377 2377 }
2378 2378
2379 2379 /*
2380 2380 * Post an asynchronous event command to catch errors.
2381 2381 */
2382 2382 if (nvme_async_event(nvme) != DDI_SUCCESS) {
2383 2383 dev_err(nvme->n_dip, CE_WARN,
2384 2384 "!failed to post async event");
2385 2385 goto fail;
2386 2386 }
2387 2387
2388 2388 /*
2389 2389 * Identify Controller
2390 2390 */
2391 2391 nvme->n_idctl = nvme_identify(nvme, 0);
2392 2392 if (nvme->n_idctl == NULL) {
2393 2393 dev_err(nvme->n_dip, CE_WARN,
2394 2394 "!failed to identify controller");
2395 2395 goto fail;
2396 2396 }
2397 2397
2398 2398 /*
2399 2399 * Get Vendor & Product ID
2400 2400 */
2401 2401 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2402 2402 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2403 2403 sata_split_model(model, &vendor, &product);
2404 2404
2405 2405 if (vendor == NULL)
2406 2406 nvme->n_vendor = strdup("NVMe");
2407 2407 else
2408 2408 nvme->n_vendor = strdup(vendor);
2409 2409
2410 2410 nvme->n_product = strdup(product);
2411 2411
2412 2412 /*
2413 2413 * Get controller limits.
2414 2414 */
2415 2415 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2416 2416 MIN(nvme->n_admin_queue_len / 10,
2417 2417 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2418 2418
2419 2419 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2420 2420 "async-event-limit", nvme->n_async_event_limit);
2421 2421
2422 2422 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2423 2423
2424 2424 /*
2425 2425 * Reinitialize the semaphore with the true abort command limit
2426 2426 * supported by the hardware. It's not necessary to disable interrupts
2427 2427 * as only command aborts use the semaphore, and no commands are
2428 2428 * executed or aborted while we're here.
2429 2429 */
2430 2430 sema_destroy(&nvme->n_abort_sema);
2431 2431 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2432 2432 SEMA_DRIVER, NULL);
2433 2433
2434 2434 nvme->n_progress |= NVME_CTRL_LIMITS;
2435 2435
2436 2436 if (nvme->n_idctl->id_mdts == 0)
2437 2437 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2438 2438 else
2439 2439 nvme->n_max_data_transfer_size =
2440 2440 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2441 2441
2442 2442 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2443 2443
2444 2444 /*
2445 2445 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2446 2446 * Chained PRPs are currently unsupported.
2447 2447 *
2448 2448 * This is a no-op on hardware which doesn't support a transfer size
2449 2449 * big enough to require chained PRPs.
2450 2450 */
2451 2451 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2452 2452 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2453 2453
2454 2454 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2455 2455
2456 2456 /*
2457 2457 * Make sure the minimum/maximum queue entry sizes are not
2458 2458 * larger/smaller than the default.
2459 2459 */
2460 2460
2461 2461 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2462 2462 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2463 2463 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2464 2464 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2465 2465 goto fail;
2466 2466
2467 2467 /*
2468 2468 * Check for the presence of a Volatile Write Cache. If present,
2469 2469 * enable or disable based on the value of the property
2470 2470 * volatile-write-cache-enable (default is enabled).
2471 2471 */
2472 2472 nvme->n_write_cache_present =
2473 2473 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2474 2474
2475 2475 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2476 2476 "volatile-write-cache-present",
2477 2477 nvme->n_write_cache_present ? 1 : 0);
2478 2478
2479 2479 if (!nvme->n_write_cache_present) {
2480 2480 nvme->n_write_cache_enabled = B_FALSE;
2481 2481 } else if (!nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)) {
2482 2482 dev_err(nvme->n_dip, CE_WARN,
2483 2483 "!failed to %sable volatile write cache",
2484 2484 nvme->n_write_cache_enabled ? "en" : "dis");
2485 2485 /*
2486 2486 * Assume the cache is (still) enabled.
2487 2487 */
2488 2488 nvme->n_write_cache_enabled = B_TRUE;
2489 2489 }
2490 2490
2491 2491 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2492 2492 "volatile-write-cache-enable",
2493 2493 nvme->n_write_cache_enabled ? 1 : 0);
2494 2494
2495 2495 /*
2496 2496 * Assume LBA Range Type feature is supported. If it isn't this
2497 2497 * will be set to B_FALSE by nvme_get_features().
2498 2498 */
2499 2499 nvme->n_lba_range_supported = B_TRUE;
2500 2500
2501 2501 /*
2502 2502 * Check support for Autonomous Power State Transition.
2503 2503 */
2504 2504 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2505 2505 nvme->n_auto_pst_supported =
2506 2506 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2507 2507
2508 2508 /*
2509 2509 * Identify Namespaces
2510 2510 */
2511 2511 nvme->n_namespace_count = nvme->n_idctl->id_nn;
2512 2512 if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2513 2513 dev_err(nvme->n_dip, CE_WARN,
2514 2514 "!too many namespaces: %d, limiting to %d\n",
2515 2515 nvme->n_namespace_count, NVME_MINOR_MAX);
2516 2516 nvme->n_namespace_count = NVME_MINOR_MAX;
2517 2517 }
2518 2518
2519 2519 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2520 2520 nvme->n_namespace_count, KM_SLEEP);
2521 2521
2522 2522 for (i = 0; i != nvme->n_namespace_count; i++) {
2523 2523 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2524 2524 NULL);
2525 2525 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2526 2526 goto fail;
2527 2527 }
2528 2528
2529 2529 /*
2530 2530 * Try to set up MSI/MSI-X interrupts.
2531 2531 */
2532 2532 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2533 2533 != 0) {
2534 2534 nvme_release_interrupts(nvme);
2535 2535
2536 2536 nqueues = MIN(UINT16_MAX, ncpus);
2537 2537
2538 2538 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2539 2539 nqueues) != DDI_SUCCESS) &&
2540 2540 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2541 2541 nqueues) != DDI_SUCCESS)) {
2542 2542 dev_err(nvme->n_dip, CE_WARN,
2543 2543 "!failed to setup MSI/MSI-X interrupts");
2544 2544 goto fail;
2545 2545 }
2546 2546 }
2547 2547
2548 2548 nqueues = nvme->n_intr_cnt;
2549 2549
2550 2550 /*
2551 2551 * Create I/O queue pairs.
2552 2552 */
2553 2553 nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2554 2554 if (nvme->n_ioq_count == 0) {
2555 2555 dev_err(nvme->n_dip, CE_WARN,
2556 2556 "!failed to set number of I/O queues to %d", nqueues);
2557 2557 goto fail;
2558 2558 }
2559 2559
2560 2560 /*
2561 2561 * Reallocate I/O queue array
2562 2562 */
2563 2563 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2564 2564 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2565 2565 (nvme->n_ioq_count + 1), KM_SLEEP);
2566 2566 nvme->n_ioq[0] = nvme->n_adminq;
2567 2567
2568 2568 /*
2569 2569 * If we got less queues than we asked for we might as well give
2570 2570 * some of the interrupt vectors back to the system.
2571 2571 */
2572 2572 if (nvme->n_ioq_count < nqueues) {
2573 2573 nvme_release_interrupts(nvme);
2574 2574
2575 2575 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2576 2576 nvme->n_ioq_count) != DDI_SUCCESS) {
2577 2577 dev_err(nvme->n_dip, CE_WARN,
2578 2578 "!failed to reduce number of interrupts");
2579 2579 goto fail;
2580 2580 }
2581 2581 }
2582 2582
2583 2583 /*
2584 2584 * Alloc & register I/O queue pairs
2585 2585 */
2586 2586 nvme->n_io_queue_len =
2587 2587 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2588 2588 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2589 2589 nvme->n_io_queue_len);
2590 2590
2591 2591 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2592 2592 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2593 2593 &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2594 2594 dev_err(nvme->n_dip, CE_WARN,
2595 2595 "!unable to allocate I/O qpair %d", i);
2596 2596 goto fail;
2597 2597 }
2598 2598
2599 2599 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2600 2600 != DDI_SUCCESS) {
2601 2601 dev_err(nvme->n_dip, CE_WARN,
2602 2602 "!unable to create I/O qpair %d", i);
2603 2603 goto fail;
2604 2604 }
2605 2605 }
2606 2606
2607 2607 /*
2608 2608 * Post more asynchronous events commands to reduce event reporting
2609 2609 * latency as suggested by the spec.
2610 2610 */
2611 2611 for (i = 1; i != nvme->n_async_event_limit; i++) {
2612 2612 if (nvme_async_event(nvme) != DDI_SUCCESS) {
2613 2613 dev_err(nvme->n_dip, CE_WARN,
2614 2614 "!failed to post async event %d", i);
2615 2615 goto fail;
2616 2616 }
2617 2617 }
2618 2618
2619 2619 return (DDI_SUCCESS);
2620 2620
2621 2621 fail:
2622 2622 (void) nvme_reset(nvme, B_FALSE);
2623 2623 return (DDI_FAILURE);
2624 2624 }
2625 2625
2626 2626 static uint_t
2627 2627 nvme_intr(caddr_t arg1, caddr_t arg2)
2628 2628 {
2629 2629 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2630 2630 nvme_t *nvme = (nvme_t *)arg1;
2631 2631 int inum = (int)(uintptr_t)arg2;
2632 2632 int ccnt = 0;
2633 2633 int qnum;
2634 2634 nvme_cmd_t *cmd;
2635 2635
2636 2636 if (inum >= nvme->n_intr_cnt)
2637 2637 return (DDI_INTR_UNCLAIMED);
2638 2638
2639 2639 /*
2640 2640 * The interrupt vector a queue uses is calculated as queue_idx %
2641 2641 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2642 2642 * in steps of n_intr_cnt to process all queues using this vector.
2643 2643 */
2644 2644 for (qnum = inum;
2645 2645 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2646 2646 qnum += nvme->n_intr_cnt) {
2647 2647 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2648 2648 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2649 2649 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2650 2650 ccnt++;
2651 2651 }
2652 2652 }
2653 2653
2654 2654 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2655 2655 }
2656 2656
2657 2657 static void
2658 2658 nvme_release_interrupts(nvme_t *nvme)
2659 2659 {
2660 2660 int i;
2661 2661
2662 2662 for (i = 0; i < nvme->n_intr_cnt; i++) {
2663 2663 if (nvme->n_inth[i] == NULL)
2664 2664 break;
2665 2665
2666 2666 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2667 2667 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2668 2668 else
2669 2669 (void) ddi_intr_disable(nvme->n_inth[i]);
2670 2670
2671 2671 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2672 2672 (void) ddi_intr_free(nvme->n_inth[i]);
2673 2673 }
2674 2674
2675 2675 kmem_free(nvme->n_inth, nvme->n_inth_sz);
2676 2676 nvme->n_inth = NULL;
2677 2677 nvme->n_inth_sz = 0;
2678 2678
2679 2679 nvme->n_progress &= ~NVME_INTERRUPTS;
2680 2680 }
2681 2681
2682 2682 static int
2683 2683 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2684 2684 {
2685 2685 int nintrs, navail, count;
2686 2686 int ret;
2687 2687 int i;
2688 2688
2689 2689 if (nvme->n_intr_types == 0) {
2690 2690 ret = ddi_intr_get_supported_types(nvme->n_dip,
2691 2691 &nvme->n_intr_types);
2692 2692 if (ret != DDI_SUCCESS) {
2693 2693 dev_err(nvme->n_dip, CE_WARN,
2694 2694 "!%s: ddi_intr_get_supported types failed",
2695 2695 __func__);
2696 2696 return (ret);
2697 2697 }
2698 2698 #ifdef __x86
2699 2699 if (get_hwenv() == HW_VMWARE)
2700 2700 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2701 2701 #endif
2702 2702 }
2703 2703
2704 2704 if ((nvme->n_intr_types & intr_type) == 0)
2705 2705 return (DDI_FAILURE);
2706 2706
2707 2707 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2708 2708 if (ret != DDI_SUCCESS) {
2709 2709 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2710 2710 __func__);
2711 2711 return (ret);
2712 2712 }
2713 2713
2714 2714 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2715 2715 if (ret != DDI_SUCCESS) {
2716 2716 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2717 2717 __func__);
2718 2718 return (ret);
2719 2719 }
2720 2720
2721 2721 /* We want at most one interrupt per queue pair. */
2722 2722 if (navail > nqpairs)
2723 2723 navail = nqpairs;
2724 2724
2725 2725 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2726 2726 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2727 2727
2728 2728 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2729 2729 &count, 0);
2730 2730 if (ret != DDI_SUCCESS) {
2731 2731 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2732 2732 __func__);
2733 2733 goto fail;
2734 2734 }
2735 2735
2736 2736 nvme->n_intr_cnt = count;
2737 2737
2738 2738 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2739 2739 if (ret != DDI_SUCCESS) {
2740 2740 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2741 2741 __func__);
2742 2742 goto fail;
2743 2743 }
2744 2744
2745 2745 for (i = 0; i < count; i++) {
2746 2746 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2747 2747 (void *)nvme, (void *)(uintptr_t)i);
2748 2748 if (ret != DDI_SUCCESS) {
2749 2749 dev_err(nvme->n_dip, CE_WARN,
2750 2750 "!%s: ddi_intr_add_handler failed", __func__);
2751 2751 goto fail;
2752 2752 }
2753 2753 }
2754 2754
2755 2755 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2756 2756
2757 2757 for (i = 0; i < count; i++) {
2758 2758 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2759 2759 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2760 2760 else
2761 2761 ret = ddi_intr_enable(nvme->n_inth[i]);
2762 2762
2763 2763 if (ret != DDI_SUCCESS) {
2764 2764 dev_err(nvme->n_dip, CE_WARN,
2765 2765 "!%s: enabling interrupt %d failed", __func__, i);
2766 2766 goto fail;
2767 2767 }
2768 2768 }
2769 2769
2770 2770 nvme->n_intr_type = intr_type;
2771 2771
2772 2772 nvme->n_progress |= NVME_INTERRUPTS;
2773 2773
2774 2774 return (DDI_SUCCESS);
2775 2775
2776 2776 fail:
2777 2777 nvme_release_interrupts(nvme);
2778 2778
2779 2779 return (ret);
2780 2780 }
2781 2781
2782 2782 static int
2783 2783 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2784 2784 {
2785 2785 _NOTE(ARGUNUSED(arg));
2786 2786
2787 2787 pci_ereport_post(dip, fm_error, NULL);
2788 2788 return (fm_error->fme_status);
2789 2789 }
2790 2790
2791 2791 static int
2792 2792 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2793 2793 {
2794 2794 nvme_t *nvme;
2795 2795 int instance;
2796 2796 int nregs;
2797 2797 off_t regsize;
2798 2798 int i;
2799 2799 char name[32];
2800 2800
2801 2801 if (cmd != DDI_ATTACH)
2802 2802 return (DDI_FAILURE);
2803 2803
2804 2804 instance = ddi_get_instance(dip);
2805 2805
2806 2806 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2807 2807 return (DDI_FAILURE);
2808 2808
2809 2809 nvme = ddi_get_soft_state(nvme_state, instance);
2810 2810 ddi_set_driver_private(dip, nvme);
2811 2811 nvme->n_dip = dip;
2812 2812
2813 2813 mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2814 2814
2815 2815 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2816 2816 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2817 2817 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2818 2818 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2819 2819 B_TRUE : B_FALSE;
2820 2820 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2821 2821 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2822 2822 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2823 2823 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2824 2824 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2825 2825 DDI_PROP_DONTPASS, "async-event-limit",
2826 2826 NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2827 2827 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2828 2828 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2829 2829 B_TRUE : B_FALSE;
2830 2830 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2831 2831 DDI_PROP_DONTPASS, "min-phys-block-size",
2832 2832 NVME_DEFAULT_MIN_BLOCK_SIZE);
2833 2833
2834 2834 if (!ISP2(nvme->n_min_block_size) ||
2835 2835 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2836 2836 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2837 2837 "using default %d", ISP2(nvme->n_min_block_size) ?
2838 2838 "too low" : "not a power of 2",
2839 2839 NVME_DEFAULT_MIN_BLOCK_SIZE);
2840 2840 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2841 2841 }
2842 2842
2843 2843 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2844 2844 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2845 2845 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2846 2846 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2847 2847
2848 2848 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2849 2849 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2850 2850
2851 2851 if (nvme->n_async_event_limit < 1)
2852 2852 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2853 2853
2854 2854 nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2855 2855 nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2856 2856 nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2857 2857 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2858 2858
2859 2859 /*
2860 2860 * Setup FMA support.
2861 2861 */
2862 2862 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2863 2863 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2864 2864 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2865 2865 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2866 2866
2867 2867 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2868 2868
2869 2869 if (nvme->n_fm_cap) {
2870 2870 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2871 2871 nvme->n_reg_acc_attr.devacc_attr_access =
2872 2872 DDI_FLAGERR_ACC;
2873 2873
2874 2874 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2875 2875 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2876 2876 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2877 2877 }
2878 2878
2879 2879 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2880 2880 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2881 2881 pci_ereport_setup(dip);
2882 2882
2883 2883 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2884 2884 ddi_fm_handler_register(dip, nvme_fm_errcb,
2885 2885 (void *)nvme);
2886 2886 }
2887 2887
2888 2888 nvme->n_progress |= NVME_FMA_INIT;
2889 2889
2890 2890 /*
2891 2891 * The spec defines several register sets. Only the controller
2892 2892 * registers (set 1) are currently used.
2893 2893 */
2894 2894 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2895 2895 nregs < 2 ||
2896 2896 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE)
2897 2897 goto fail;
2898 2898
2899 2899 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2900 2900 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2901 2901 dev_err(dip, CE_WARN, "!failed to map regset 1");
2902 2902 goto fail;
2903 2903 }
2904 2904
2905 2905 nvme->n_progress |= NVME_REGS_MAPPED;
2906 2906
2907 2907 /*
2908 2908 * Create taskq for command completion.
2909 2909 */
2910 2910 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2911 2911 ddi_driver_name(dip), ddi_get_instance(dip));
2912 2912 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2913 2913 TASKQ_DEFAULTPRI, 0);
2914 2914 if (nvme->n_cmd_taskq == NULL) {
2915 2915 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2916 2916 goto fail;
2917 2917 }
2918 2918
2919 2919 /*
2920 2920 * Create PRP DMA cache
2921 2921 */
2922 2922 (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2923 2923 ddi_driver_name(dip), ddi_get_instance(dip));
2924 2924 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2925 2925 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2926 2926 NULL, (void *)nvme, NULL, 0);
2927 2927
2928 2928 if (nvme_init(nvme) != DDI_SUCCESS)
2929 2929 goto fail;
2930 2930
2931 2931 /*
2932 2932 * Attach the blkdev driver for each namespace.
2933 2933 */
2934 2934 for (i = 0; i != nvme->n_namespace_count; i++) {
2935 2935 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2936 2936 S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2937 2937 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2938 2938 dev_err(dip, CE_WARN,
2939 2939 "!failed to create minor node for namespace %d", i);
2940 2940 goto fail;
2941 2941 }
2942 2942
2943 2943 if (nvme->n_ns[i].ns_ignore)
2944 2944 continue;
2945 2945
2946 2946 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2947 2947 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2948 2948
2949 2949 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2950 2950 dev_err(dip, CE_WARN,
2951 2951 "!failed to get blkdev handle for namespace %d", i);
2952 2952 goto fail;
2953 2953 }
2954 2954
2955 2955 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2956 2956 != DDI_SUCCESS) {
2957 2957 dev_err(dip, CE_WARN,
2958 2958 "!failed to attach blkdev handle for namespace %d",
2959 2959 i);
2960 2960 goto fail;
2961 2961 }
2962 2962 }
2963 2963
2964 2964 if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2965 2965 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2966 2966 != DDI_SUCCESS) {
2967 2967 dev_err(dip, CE_WARN, "nvme_attach: "
2968 2968 "cannot create devctl minor node");
2969 2969 goto fail;
2970 2970 }
2971 2971
2972 2972 return (DDI_SUCCESS);
2973 2973
2974 2974 fail:
2975 2975 /* attach successful anyway so that FMA can retire the device */
2976 2976 if (nvme->n_dead)
2977 2977 return (DDI_SUCCESS);
2978 2978
2979 2979 (void) nvme_detach(dip, DDI_DETACH);
2980 2980
2981 2981 return (DDI_FAILURE);
2982 2982 }
2983 2983
2984 2984 static int
2985 2985 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2986 2986 {
2987 2987 int instance, i;
2988 2988 nvme_t *nvme;
2989 2989
2990 2990 if (cmd != DDI_DETACH)
2991 2991 return (DDI_FAILURE);
2992 2992
2993 2993 instance = ddi_get_instance(dip);
2994 2994
2995 2995 nvme = ddi_get_soft_state(nvme_state, instance);
2996 2996
2997 2997 if (nvme == NULL)
2998 2998 return (DDI_FAILURE);
2999 2999
3000 3000 ddi_remove_minor_node(dip, "devctl");
3001 3001 mutex_destroy(&nvme->n_minor.nm_mutex);
3002 3002
3003 3003 if (nvme->n_ns) {
3004 3004 for (i = 0; i != nvme->n_namespace_count; i++) {
3005 3005 ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3006 3006 mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3007 3007
3008 3008 if (nvme->n_ns[i].ns_bd_hdl) {
3009 3009 (void) bd_detach_handle(
3010 3010 nvme->n_ns[i].ns_bd_hdl);
3011 3011 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3012 3012 }
3013 3013
3014 3014 if (nvme->n_ns[i].ns_idns)
3015 3015 kmem_free(nvme->n_ns[i].ns_idns,
3016 3016 sizeof (nvme_identify_nsid_t));
3017 3017 if (nvme->n_ns[i].ns_devid)
3018 3018 strfree(nvme->n_ns[i].ns_devid);
3019 3019 }
3020 3020
3021 3021 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3022 3022 nvme->n_namespace_count);
3023 3023 }
3024 3024
3025 3025 if (nvme->n_progress & NVME_INTERRUPTS)
3026 3026 nvme_release_interrupts(nvme);
3027 3027
3028 3028 if (nvme->n_cmd_taskq)
3029 3029 ddi_taskq_wait(nvme->n_cmd_taskq);
3030 3030
3031 3031 if (nvme->n_ioq_count > 0) {
3032 3032 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3033 3033 if (nvme->n_ioq[i] != NULL) {
3034 3034 /* TODO: send destroy queue commands */
3035 3035 nvme_free_qpair(nvme->n_ioq[i]);
3036 3036 }
3037 3037 }
3038 3038
3039 3039 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3040 3040 (nvme->n_ioq_count + 1));
3041 3041 }
3042 3042
3043 3043 if (nvme->n_prp_cache != NULL) {
3044 3044 kmem_cache_destroy(nvme->n_prp_cache);
3045 3045 }
3046 3046
3047 3047 if (nvme->n_progress & NVME_REGS_MAPPED) {
3048 3048 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3049 3049 (void) nvme_reset(nvme, B_FALSE);
3050 3050 }
3051 3051
3052 3052 if (nvme->n_cmd_taskq)
3053 3053 ddi_taskq_destroy(nvme->n_cmd_taskq);
3054 3054
3055 3055 if (nvme->n_progress & NVME_CTRL_LIMITS)
3056 3056 sema_destroy(&nvme->n_abort_sema);
3057 3057
3058 3058 if (nvme->n_progress & NVME_ADMIN_QUEUE)
3059 3059 nvme_free_qpair(nvme->n_adminq);
3060 3060
3061 3061 if (nvme->n_idctl)
3062 3062 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3063 3063
3064 3064 if (nvme->n_progress & NVME_REGS_MAPPED)
3065 3065 ddi_regs_map_free(&nvme->n_regh);
3066 3066
3067 3067 if (nvme->n_progress & NVME_FMA_INIT) {
3068 3068 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3069 3069 ddi_fm_handler_unregister(nvme->n_dip);
3070 3070
3071 3071 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3072 3072 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3073 3073 pci_ereport_teardown(nvme->n_dip);
3074 3074
3075 3075 ddi_fm_fini(nvme->n_dip);
3076 3076 }
3077 3077
3078 3078 if (nvme->n_vendor != NULL)
3079 3079 strfree(nvme->n_vendor);
3080 3080
3081 3081 if (nvme->n_product != NULL)
3082 3082 strfree(nvme->n_product);
3083 3083
3084 3084 ddi_soft_state_free(nvme_state, instance);
3085 3085
3086 3086 return (DDI_SUCCESS);
3087 3087 }
3088 3088
3089 3089 static int
3090 3090 nvme_quiesce(dev_info_t *dip)
3091 3091 {
3092 3092 int instance;
3093 3093 nvme_t *nvme;
3094 3094
3095 3095 instance = ddi_get_instance(dip);
3096 3096
3097 3097 nvme = ddi_get_soft_state(nvme_state, instance);
3098 3098
3099 3099 if (nvme == NULL)
3100 3100 return (DDI_FAILURE);
3101 3101
3102 3102 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3103 3103
3104 3104 (void) nvme_reset(nvme, B_TRUE);
3105 3105
3106 3106 return (DDI_FAILURE);
3107 3107 }
3108 3108
3109 3109 static int
3110 3110 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3111 3111 {
3112 3112 nvme_t *nvme = cmd->nc_nvme;
3113 3113 int nprp_page, nprp;
3114 3114 uint64_t *prp;
3115 3115
3116 3116 if (xfer->x_ndmac == 0)
3117 3117 return (DDI_FAILURE);
3118 3118
3119 3119 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3120 3120 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3121 3121
3122 3122 if (xfer->x_ndmac == 1) {
3123 3123 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3124 3124 return (DDI_SUCCESS);
3125 3125 } else if (xfer->x_ndmac == 2) {
3126 3126 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3127 3127 return (DDI_SUCCESS);
3128 3128 }
3129 3129
3130 3130 xfer->x_ndmac--;
3131 3131
3132 3132 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3133 3133 ASSERT(nprp_page > 0);
3134 3134 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3135 3135
3136 3136 /*
3137 3137 * We currently don't support chained PRPs and set up our DMA
3138 3138 * attributes to reflect that. If we still get an I/O request
3139 3139 * that needs a chained PRP something is very wrong.
3140 3140 */
3141 3141 VERIFY(nprp == 1);
3142 3142
3143 3143 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3144 3144 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3145 3145
3146 3146 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3147 3147
3148 3148 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3149 3149 for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3150 3150 xfer->x_ndmac > 0;
3151 3151 prp++, xfer->x_ndmac--) {
3152 3152 *prp = xfer->x_dmac.dmac_laddress;
3153 3153 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3154 3154 }
3155 3155
3156 3156 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3157 3157 DDI_DMA_SYNC_FORDEV);
3158 3158 return (DDI_SUCCESS);
3159 3159 }
3160 3160
3161 3161 static nvme_cmd_t *
3162 3162 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3163 3163 {
3164 3164 nvme_t *nvme = ns->ns_nvme;
3165 3165 nvme_cmd_t *cmd;
3166 3166
3167 3167 /*
3168 3168 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3169 3169 */
3170 3170 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3171 3171 KM_NOSLEEP : KM_SLEEP);
3172 3172
3173 3173 if (cmd == NULL)
3174 3174 return (NULL);
3175 3175
3176 3176 cmd->nc_sqe.sqe_opc = opc;
3177 3177 cmd->nc_callback = nvme_bd_xfer_done;
3178 3178 cmd->nc_xfer = xfer;
3179 3179
3180 3180 switch (opc) {
3181 3181 case NVME_OPC_NVM_WRITE:
3182 3182 case NVME_OPC_NVM_READ:
3183 3183 VERIFY(xfer->x_nblks <= 0x10000);
3184 3184
3185 3185 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3186 3186
3187 3187 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3188 3188 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3189 3189 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3190 3190
3191 3191 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3192 3192 goto fail;
3193 3193 break;
3194 3194
3195 3195 case NVME_OPC_NVM_FLUSH:
3196 3196 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3197 3197 break;
3198 3198
3199 3199 default:
3200 3200 goto fail;
3201 3201 }
3202 3202
3203 3203 return (cmd);
3204 3204
3205 3205 fail:
3206 3206 nvme_free_cmd(cmd);
3207 3207 return (NULL);
3208 3208 }
3209 3209
3210 3210 static void
3211 3211 nvme_bd_xfer_done(void *arg)
3212 3212 {
3213 3213 nvme_cmd_t *cmd = arg;
3214 3214 bd_xfer_t *xfer = cmd->nc_xfer;
3215 3215 int error = 0;
3216 3216
3217 3217 error = nvme_check_cmd_status(cmd);
3218 3218 nvme_free_cmd(cmd);
3219 3219
3220 3220 bd_xfer_done(xfer, error);
3221 3221 }
3222 3222
3223 3223 static void
3224 3224 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3225 3225 {
3226 3226 nvme_namespace_t *ns = arg;
3227 3227 nvme_t *nvme = ns->ns_nvme;
3228 3228
3229 3229 /*
3230 3230 * blkdev maintains one queue size per instance (namespace),
3231 3231 * but all namespace share the I/O queues.
3232 3232 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3233 3233 * or change blkdev to handle EAGAIN
3234 3234 */
3235 3235 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3236 3236 / nvme->n_namespace_count;
3237 3237
3238 3238 /*
3239 3239 * d_maxxfer is not set, which means the value is taken from the DMA
3240 3240 * attributes specified to bd_alloc_handle.
3241 3241 */
3242 3242
3243 3243 drive->d_removable = B_FALSE;
3244 3244 drive->d_hotpluggable = B_FALSE;
3245 3245
3246 3246 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3247 3247 drive->d_target = ns->ns_id;
3248 3248 drive->d_lun = 0;
3249 3249
3250 3250 drive->d_model = nvme->n_idctl->id_model;
3251 3251 drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3252 3252 drive->d_vendor = nvme->n_vendor;
3253 3253 drive->d_vendor_len = strlen(nvme->n_vendor);
3254 3254 drive->d_product = nvme->n_product;
3255 3255 drive->d_product_len = strlen(nvme->n_product);
3256 3256 drive->d_serial = nvme->n_idctl->id_serial;
3257 3257 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3258 3258 drive->d_revision = nvme->n_idctl->id_fwrev;
3259 3259 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3260 3260 }
3261 3261
3262 3262 static int
3263 3263 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3264 3264 {
3265 3265 nvme_namespace_t *ns = arg;
3266 3266
3267 3267 media->m_nblks = ns->ns_block_count;
3268 3268 media->m_blksize = ns->ns_block_size;
3269 3269 media->m_readonly = B_FALSE;
3270 3270 media->m_solidstate = B_TRUE;
3271 3271
3272 3272 media->m_pblksize = ns->ns_best_block_size;
3273 3273
3274 3274 return (0);
3275 3275 }
3276 3276
3277 3277 static int
3278 3278 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3279 3279 {
3280 3280 nvme_t *nvme = ns->ns_nvme;
3281 3281 nvme_cmd_t *cmd, *ret;
3282 3282 nvme_qpair_t *ioq;
3283 3283 boolean_t poll;
3284 3284
3285 3285 if (nvme->n_dead)
3286 3286 return (EIO);
3287 3287
3288 3288 cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3289 3289 if (cmd == NULL)
3290 3290 return (ENOMEM);
3291 3291
3292 3292 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3293 3293 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3294 3294 ioq = nvme->n_ioq[cmd->nc_sqid];
3295 3295
3296 3296 /*
3297 3297 * Get the polling flag before submitting the command. The command may
3298 3298 * complete immediately after it was submitted, which means we must
3299 3299 * treat both cmd and xfer as if they have been freed already.
3300 3300 */
3301 3301 poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3302 3302
3303 3303 if (nvme_submit_cmd(ioq, cmd) != DDI_SUCCESS)
3304 3304 return (EAGAIN);
3305 3305
3306 3306 if (!poll)
3307 3307 return (0);
3308 3308
3309 3309 do {
3310 3310 ret = nvme_retrieve_cmd(nvme, ioq);
3311 3311 if (ret != NULL)
3312 3312 nvme_bd_xfer_done(ret);
3313 3313 else
3314 3314 drv_usecwait(10);
3315 3315 } while (ioq->nq_active_cmds != 0);
3316 3316
3317 3317 return (0);
3318 3318 }
3319 3319
3320 3320 static int
3321 3321 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3322 3322 {
3323 3323 nvme_namespace_t *ns = arg;
3324 3324
3325 3325 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3326 3326 }
3327 3327
3328 3328 static int
3329 3329 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3330 3330 {
3331 3331 nvme_namespace_t *ns = arg;
3332 3332
3333 3333 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3334 3334 }
3335 3335
3336 3336 static int
3337 3337 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3338 3338 {
3339 3339 nvme_namespace_t *ns = arg;
3340 3340
3341 3341 if (ns->ns_nvme->n_dead)
3342 3342 return (EIO);
3343 3343
3344 3344 /*
3345 3345 * If the volatile write cache is not present or not enabled the FLUSH
3346 3346 * command is a no-op, so we can take a shortcut here.
3347 3347 */
3348 3348 if (!ns->ns_nvme->n_write_cache_present) {
3349 3349 bd_xfer_done(xfer, ENOTSUP);
3350 3350 return (0);
3351 3351 }
3352 3352
3353 3353 if (!ns->ns_nvme->n_write_cache_enabled) {
3354 3354 bd_xfer_done(xfer, 0);
3355 3355 return (0);
3356 3356 }
3357 3357
3358 3358 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3359 3359 }
3360 3360
3361 3361 static int
3362 3362 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3363 3363 {
3364 3364 nvme_namespace_t *ns = arg;
3365 3365
3366 3366 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3367 3367 if (*(uint64_t *)ns->ns_eui64 != 0) {
3368 3368 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3369 3369 sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3370 3370 } else {
3371 3371 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3372 3372 strlen(ns->ns_devid), ns->ns_devid, devid));
3373 3373 }
3374 3374 }
3375 3375
3376 3376 static int
3377 3377 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3378 3378 {
3379 3379 #ifndef __lock_lint
3380 3380 _NOTE(ARGUNUSED(cred_p));
3381 3381 #endif
3382 3382 minor_t minor = getminor(*devp);
3383 3383 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3384 3384 int nsid = NVME_MINOR_NSID(minor);
3385 3385 nvme_minor_state_t *nm;
3386 3386 int rv = 0;
3387 3387
3388 3388 if (otyp != OTYP_CHR)
3389 3389 return (EINVAL);
3390 3390
3391 3391 if (nvme == NULL)
3392 3392 return (ENXIO);
3393 3393
3394 3394 if (nsid > nvme->n_namespace_count)
3395 3395 return (ENXIO);
3396 3396
3397 3397 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3398 3398
3399 3399 mutex_enter(&nm->nm_mutex);
3400 3400 if (nm->nm_oexcl) {
3401 3401 rv = EBUSY;
3402 3402 goto out;
3403 3403 }
3404 3404
3405 3405 if (flag & FEXCL) {
3406 3406 if (nm->nm_ocnt != 0) {
3407 3407 rv = EBUSY;
3408 3408 goto out;
3409 3409 }
3410 3410 nm->nm_oexcl = B_TRUE;
3411 3411 }
3412 3412
3413 3413 nm->nm_ocnt++;
3414 3414
3415 3415 out:
3416 3416 mutex_exit(&nm->nm_mutex);
3417 3417 return (rv);
3418 3418
3419 3419 }
3420 3420
3421 3421 static int
3422 3422 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3423 3423 {
3424 3424 #ifndef __lock_lint
3425 3425 _NOTE(ARGUNUSED(cred_p));
3426 3426 _NOTE(ARGUNUSED(flag));
3427 3427 #endif
3428 3428 minor_t minor = getminor(dev);
3429 3429 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3430 3430 int nsid = NVME_MINOR_NSID(minor);
3431 3431 nvme_minor_state_t *nm;
3432 3432
3433 3433 if (otyp != OTYP_CHR)
3434 3434 return (ENXIO);
3435 3435
3436 3436 if (nvme == NULL)
3437 3437 return (ENXIO);
3438 3438
3439 3439 if (nsid > nvme->n_namespace_count)
3440 3440 return (ENXIO);
3441 3441
3442 3442 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3443 3443
3444 3444 mutex_enter(&nm->nm_mutex);
3445 3445 if (nm->nm_oexcl)
3446 3446 nm->nm_oexcl = B_FALSE;
3447 3447
3448 3448 ASSERT(nm->nm_ocnt > 0);
3449 3449 nm->nm_ocnt--;
3450 3450 mutex_exit(&nm->nm_mutex);
3451 3451
3452 3452 return (0);
3453 3453 }
3454 3454
3455 3455 static int
3456 3456 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3457 3457 cred_t *cred_p)
3458 3458 {
3459 3459 _NOTE(ARGUNUSED(cred_p));
3460 3460 int rv = 0;
3461 3461 void *idctl;
3462 3462
3463 3463 if ((mode & FREAD) == 0)
3464 3464 return (EPERM);
3465 3465
3466 3466 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3467 3467 return (EINVAL);
3468 3468
3469 3469 idctl = nvme_identify(nvme, nsid);
3470 3470 if (idctl == NULL)
3471 3471 return (EIO);
3472 3472
3473 3473 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3474 3474 != 0)
3475 3475 rv = EFAULT;
3476 3476
3477 3477 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3478 3478
3479 3479 return (rv);
3480 3480 }
3481 3481
3482 3482 static int
3483 3483 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3484 3484 int mode, cred_t *cred_p)
3485 3485 {
3486 3486 _NOTE(ARGUNUSED(nsid, cred_p));
3487 3487 int rv = 0;
3488 3488 nvme_reg_cap_t cap = { 0 };
3489 3489 nvme_capabilities_t nc;
3490 3490
3491 3491 if ((mode & FREAD) == 0)
3492 3492 return (EPERM);
3493 3493
3494 3494 if (nioc->n_len < sizeof (nc))
3495 3495 return (EINVAL);
3496 3496
3497 3497 cap.r = nvme_get64(nvme, NVME_REG_CAP);
3498 3498
3499 3499 /*
3500 3500 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3501 3501 * specify the base page size of 4k (1<<12), so add 12 here to
3502 3502 * get the real page size value.
3503 3503 */
3504 3504 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3505 3505 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3506 3506
3507 3507 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3508 3508 rv = EFAULT;
3509 3509
3510 3510 return (rv);
3511 3511 }
3512 3512
3513 3513 static int
3514 3514 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3515 3515 int mode, cred_t *cred_p)
3516 3516 {
3517 3517 _NOTE(ARGUNUSED(cred_p));
3518 3518 void *log = NULL;
3519 3519 size_t bufsize = 0;
3520 3520 int rv = 0;
3521 3521
3522 3522 if ((mode & FREAD) == 0)
3523 3523 return (EPERM);
3524 3524
3525 3525 switch (nioc->n_arg) {
3526 3526 case NVME_LOGPAGE_ERROR:
3527 3527 if (nsid != 0)
3528 3528 return (EINVAL);
3529 3529 break;
3530 3530 case NVME_LOGPAGE_HEALTH:
3531 3531 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3532 3532 return (EINVAL);
3533 3533
3534 3534 if (nsid == 0)
3535 3535 nsid = (uint32_t)-1;
3536 3536
3537 3537 break;
3538 3538 case NVME_LOGPAGE_FWSLOT:
3539 3539 if (nsid != 0)
3540 3540 return (EINVAL);
3541 3541 break;
3542 3542 default:
3543 3543 return (EINVAL);
3544 3544 }
3545 3545
3546 3546 if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3547 3547 != DDI_SUCCESS)
3548 3548 return (EIO);
3549 3549
3550 3550 if (nioc->n_len < bufsize) {
3551 3551 kmem_free(log, bufsize);
3552 3552 return (EINVAL);
3553 3553 }
3554 3554
3555 3555 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3556 3556 rv = EFAULT;
3557 3557
3558 3558 nioc->n_len = bufsize;
3559 3559 kmem_free(log, bufsize);
3560 3560
3561 3561 return (rv);
3562 3562 }
3563 3563
3564 3564 static int
3565 3565 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3566 3566 int mode, cred_t *cred_p)
3567 3567 {
3568 3568 _NOTE(ARGUNUSED(cred_p));
3569 3569 void *buf = NULL;
3570 3570 size_t bufsize = 0;
3571 3571 uint32_t res = 0;
3572 3572 uint8_t feature;
3573 3573 int rv = 0;
3574 3574
3575 3575 if ((mode & FREAD) == 0)
3576 3576 return (EPERM);
3577 3577
3578 3578 if ((nioc->n_arg >> 32) > 0xff)
3579 3579 return (EINVAL);
3580 3580
3581 3581 feature = (uint8_t)(nioc->n_arg >> 32);
3582 3582
3583 3583 switch (feature) {
3584 3584 case NVME_FEAT_ARBITRATION:
3585 3585 case NVME_FEAT_POWER_MGMT:
3586 3586 case NVME_FEAT_TEMPERATURE:
3587 3587 case NVME_FEAT_ERROR:
3588 3588 case NVME_FEAT_NQUEUES:
3589 3589 case NVME_FEAT_INTR_COAL:
3590 3590 case NVME_FEAT_WRITE_ATOM:
3591 3591 case NVME_FEAT_ASYNC_EVENT:
3592 3592 case NVME_FEAT_PROGRESS:
3593 3593 if (nsid != 0)
3594 3594 return (EINVAL);
3595 3595 break;
3596 3596
3597 3597 case NVME_FEAT_INTR_VECT:
3598 3598 if (nsid != 0)
3599 3599 return (EINVAL);
3600 3600
3601 3601 res = nioc->n_arg & 0xffffffffUL;
3602 3602 if (res >= nvme->n_intr_cnt)
3603 3603 return (EINVAL);
3604 3604 break;
3605 3605
3606 3606 case NVME_FEAT_LBA_RANGE:
3607 3607 if (nvme->n_lba_range_supported == B_FALSE)
3608 3608 return (EINVAL);
3609 3609
3610 3610 if (nsid == 0 ||
3611 3611 nsid > nvme->n_namespace_count)
3612 3612 return (EINVAL);
3613 3613
3614 3614 break;
3615 3615
3616 3616 case NVME_FEAT_WRITE_CACHE:
3617 3617 if (nsid != 0)
3618 3618 return (EINVAL);
3619 3619
3620 3620 if (!nvme->n_write_cache_present)
3621 3621 return (EINVAL);
3622 3622
3623 3623 break;
3624 3624
3625 3625 case NVME_FEAT_AUTO_PST:
3626 3626 if (nsid != 0)
3627 3627 return (EINVAL);
3628 3628
3629 3629 if (!nvme->n_auto_pst_supported)
3630 3630 return (EINVAL);
3631 3631
3632 3632 break;
3633 3633
3634 3634 default:
3635 3635 return (EINVAL);
3636 3636 }
3637 3637
3638 3638 if (nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize) ==
3639 3639 B_FALSE)
3640 3640 return (EIO);
3641 3641
3642 3642 if (nioc->n_len < bufsize) {
3643 3643 kmem_free(buf, bufsize);
3644 3644 return (EINVAL);
3645 3645 }
3646 3646
3647 3647 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3648 3648 rv = EFAULT;
3649 3649
3650 3650 kmem_free(buf, bufsize);
3651 3651 nioc->n_arg = res;
3652 3652 nioc->n_len = bufsize;
3653 3653
3654 3654 return (rv);
3655 3655 }
3656 3656
3657 3657 static int
3658 3658 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3659 3659 cred_t *cred_p)
3660 3660 {
3661 3661 _NOTE(ARGUNUSED(nsid, mode, cred_p));
3662 3662
3663 3663 if ((mode & FREAD) == 0)
3664 3664 return (EPERM);
3665 3665
3666 3666 nioc->n_arg = nvme->n_intr_cnt;
3667 3667 return (0);
3668 3668 }
3669 3669
3670 3670 static int
3671 3671 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3672 3672 cred_t *cred_p)
3673 3673 {
3674 3674 _NOTE(ARGUNUSED(nsid, cred_p));
3675 3675 int rv = 0;
3676 3676
3677 3677 if ((mode & FREAD) == 0)
3678 3678 return (EPERM);
3679 3679
3680 3680 if (nioc->n_len < sizeof (nvme->n_version))
3681 3681 return (ENOMEM);
3682 3682
3683 3683 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3684 3684 sizeof (nvme->n_version), mode) != 0)
3685 3685 rv = EFAULT;
3686 3686
3687 3687 return (rv);
3688 3688 }
3689 3689
3690 3690 static int
3691 3691 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3692 3692 cred_t *cred_p)
3693 3693 {
3694 3694 _NOTE(ARGUNUSED(mode));
3695 3695 nvme_format_nvm_t frmt = { 0 };
3696 3696 int c_nsid = nsid != 0 ? nsid - 1 : 0;
3697 3697
3698 3698 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3699 3699 return (EPERM);
3700 3700
3701 3701 frmt.r = nioc->n_arg & 0xffffffff;
3702 3702
3703 3703 /*
3704 3704 * Check whether the FORMAT NVM command is supported.
3705 3705 */
3706 3706 if (nvme->n_idctl->id_oacs.oa_format == 0)
3707 3707 return (EINVAL);
3708 3708
3709 3709 /*
3710 3710 * Don't allow format or secure erase of individual namespace if that
3711 3711 * would cause a format or secure erase of all namespaces.
3712 3712 */
3713 3713 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3714 3714 return (EINVAL);
3715 3715
3716 3716 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3717 3717 nvme->n_idctl->id_fna.fn_sec_erase != 0)
3718 3718 return (EINVAL);
3719 3719
3720 3720 /*
3721 3721 * Don't allow formatting with Protection Information.
3722 3722 */
3723 3723 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3724 3724 return (EINVAL);
3725 3725
3726 3726 /*
3727 3727 * Don't allow formatting using an illegal LBA format, or any LBA format
3728 3728 * that uses metadata.
3729 3729 */
3730 3730 if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3731 3731 nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3732 3732 return (EINVAL);
3733 3733
3734 3734 /*
3735 3735 * Don't allow formatting using an illegal Secure Erase setting.
3736 3736 */
3737 3737 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3738 3738 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3739 3739 nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3740 3740 return (EINVAL);
3741 3741
3742 3742 if (nsid == 0)
3743 3743 nsid = (uint32_t)-1;
3744 3744
3745 3745 return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3746 3746 frmt.b.fm_ses));
3747 3747 }
3748 3748
3749 3749 static int
3750 3750 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3751 3751 cred_t *cred_p)
3752 3752 {
3753 3753 _NOTE(ARGUNUSED(nioc, mode));
3754 3754 int rv = 0;
3755 3755
3756 3756 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3757 3757 return (EPERM);
3758 3758
3759 3759 if (nsid == 0)
3760 3760 return (EINVAL);
3761 3761
3762 3762 rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3763 3763 if (rv != DDI_SUCCESS)
3764 3764 rv = EBUSY;
3765 3765
3766 3766 return (rv);
3767 3767 }
3768 3768
3769 3769 static int
3770 3770 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3771 3771 cred_t *cred_p)
3772 3772 {
3773 3773 _NOTE(ARGUNUSED(nioc, mode));
3774 3774 nvme_identify_nsid_t *idns;
3775 3775 int rv = 0;
3776 3776
3777 3777 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3778 3778 return (EPERM);
3779 3779
3780 3780 if (nsid == 0)
3781 3781 return (EINVAL);
3782 3782
3783 3783 /*
3784 3784 * Identify namespace again, free old identify data.
3785 3785 */
3786 3786 idns = nvme->n_ns[nsid - 1].ns_idns;
3787 3787 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3788 3788 return (EIO);
3789 3789
3790 3790 kmem_free(idns, sizeof (nvme_identify_nsid_t));
3791 3791
3792 3792 rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3793 3793 if (rv != DDI_SUCCESS)
3794 3794 rv = EBUSY;
3795 3795
3796 3796 return (rv);
3797 3797 }
3798 3798
3799 3799 static int
3800 3800 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3801 3801 int *rval_p)
3802 3802 {
3803 3803 #ifndef __lock_lint
3804 3804 _NOTE(ARGUNUSED(rval_p));
3805 3805 #endif
3806 3806 minor_t minor = getminor(dev);
3807 3807 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3808 3808 int nsid = NVME_MINOR_NSID(minor);
3809 3809 int rv = 0;
3810 3810 nvme_ioctl_t nioc;
3811 3811
3812 3812 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3813 3813 NULL,
3814 3814 nvme_ioctl_identify,
3815 3815 nvme_ioctl_identify,
3816 3816 nvme_ioctl_capabilities,
3817 3817 nvme_ioctl_get_logpage,
3818 3818 nvme_ioctl_get_features,
3819 3819 nvme_ioctl_intr_cnt,
3820 3820 nvme_ioctl_version,
3821 3821 nvme_ioctl_format,
3822 3822 nvme_ioctl_detach,
3823 3823 nvme_ioctl_attach
3824 3824 };
3825 3825
3826 3826 if (nvme == NULL)
3827 3827 return (ENXIO);
3828 3828
3829 3829 if (nsid > nvme->n_namespace_count)
3830 3830 return (ENXIO);
3831 3831
3832 3832 if (IS_DEVCTL(cmd))
3833 3833 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3834 3834
3835 3835 #ifdef _MULTI_DATAMODEL
3836 3836 switch (ddi_model_convert_from(mode & FMODELS)) {
3837 3837 case DDI_MODEL_ILP32: {
3838 3838 nvme_ioctl32_t nioc32;
3839 3839 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3840 3840 mode) != 0)
3841 3841 return (EFAULT);
3842 3842 nioc.n_len = nioc32.n_len;
3843 3843 nioc.n_buf = nioc32.n_buf;
3844 3844 nioc.n_arg = nioc32.n_arg;
3845 3845 break;
3846 3846 }
3847 3847 case DDI_MODEL_NONE:
3848 3848 #endif
3849 3849 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3850 3850 != 0)
3851 3851 return (EFAULT);
3852 3852 #ifdef _MULTI_DATAMODEL
3853 3853 break;
3854 3854 }
3855 3855 #endif
3856 3856
3857 3857 if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3858 3858 /*
3859 3859 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3860 3860 * attachment point nodes.
3861 3861 */
3862 3862 nsid = 0;
3863 3863 } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3864 3864 /*
3865 3865 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3866 3866 * will always return identify data for namespace 1.
3867 3867 */
3868 3868 nsid = 1;
3869 3869 }
3870 3870
3871 3871 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3872 3872 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3873 3873 cred_p);
3874 3874 else
3875 3875 rv = EINVAL;
3876 3876
3877 3877 #ifdef _MULTI_DATAMODEL
3878 3878 switch (ddi_model_convert_from(mode & FMODELS)) {
3879 3879 case DDI_MODEL_ILP32: {
3880 3880 nvme_ioctl32_t nioc32;
3881 3881
3882 3882 nioc32.n_len = (size32_t)nioc.n_len;
3883 3883 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3884 3884 nioc32.n_arg = nioc.n_arg;
3885 3885
3886 3886 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3887 3887 mode) != 0)
3888 3888 return (EFAULT);
3889 3889 break;
3890 3890 }
3891 3891 case DDI_MODEL_NONE:
3892 3892 #endif
3893 3893 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3894 3894 != 0)
3895 3895 return (EFAULT);
3896 3896 #ifdef _MULTI_DATAMODEL
3897 3897 break;
3898 3898 }
3899 3899 #endif
3900 3900
3901 3901 return (rv);
3902 3902 }
↓ open down ↓ |
3569 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX